SERVICE MANUAL

[NMP Part No.0275454]

NSB-7 Cellular Phones

Copyright© 2000 Nokia Mobile Phones. All Rights Reserved

Amendment Record Sheet

Amendment No	Date	Inserted By	Comments

NSB-7 Overall Manual Contents

Contents:

Section 1:	Foreword
Section 2:	General Information
Section 3:	System Module
Section 4:	UI Module
Section 5:	Product Variants
Section 6:	Service Software Instructions
Section 7:	Service Tools
Section 8:	Disassembly/Troubleshooting Instructions
Section 9:	Non-serviceable Accessories

Section 10: Schematic Diagrams

IMPORTANT

This document is intended for use by qualified service personnel only.

Company Policy

Our policy is of continuous development; details of all technical modifications will be included with service bulletins.

While every endeavour has been made to ensure the accuracy of this document, some errors may exist. If any errors are found by the reader, NOKIA MOBILE PHONES Ltd. should be notified in writing.

Please state:

Title of the Document + Issue Number/Date of publication Latest Amendment Number (if applicable) Page(s) and/or Figure(s) in error

Please send to: Nokia Mobile Phones Ltd. PAMS Technical Documentation PO Box 86 FIN-24101 SALO Finland

Warnings and Cautions

Please refer to the phone's user guide for instructions relating to operation, care and maintenance including important safety information. Note also the following:

Warnings:

- CARE MUST BE TAKEN ON INSTALLATION IN VEHICLES FITTED WITH ELEC-TRONIC ENGINE MANAGEMENT SYSTEMS AND ANTI-SKID BRAKING SYS-TEMS. UNDER CERTAIN FAULT CONDITIONS, EMITTED RF ENERGY CAN AFFECT THEIR OPERATION. IF NECESSARY, CONSULT THE VEHICLE DEALER/ MANUFACTURER TO DETERMINE THE IMMUNITY OF VEHICLE ELECTRONIC SYSTEMS TO RF ENERGY.
- 2. THE HANDPORTABLE TELEPHONE MUST NOT BE OPERATED IN AREAS LIKELY TO CONTAIN POTENTIALLY EXPLOSIVE ATMOSPHERES EG PETROL STATIONS (SERVICE STATIONS), BLASTING AREAS ETC.
- 3. OPERATION OF ANY RADIO TRANSMITTING EQUIPMENT, INCLUDING CELLU-LAR TELEPHONES, MAY INTERFERE WITH THE FUNCTIONALITY OF INADE-QUATELY PROTECTED MEDICAL DEVICES. CONSULT A PHYSICIAN OR THE MANUFACTURER OF THE MEDICAL DEVICE IF YOU HAVE ANY QUESTIONS. OTHER ELECTRONIC EQUIPMENT MAY ALSO BE SUBJECT TO INTERFERENCE.

Cautions:

- 1. Servicing and alignment must be undertaken by qualified personnel only.
- 2. Ensure all work is carried out at an anti-static workstation and that an antistatic wrist strap is worn.
- 3. Ensure solder, wire, or foreign matter does not enter the telephone as damage may result.
- 4. Use only approved components as specified in the parts list.
- 5. Ensure all components, modules screws and insulators are correctly re-fitted after servicing and alignment. Ensure all cables and wires are repositioned correctly.

This Page Intentionally Blank

Programmes After Market Services NSB-7 Series Transceivers

General Information

Table of Contents

General Information	Page No 1
Product Selection	4
Hand portables	4
Desktop Option	5
Express Car Kit (CARK-124) Option for Americas	6
Product and Module List	7
Technical Specifications	8
General Specifications of Transceiver NSB-7	8

PAMS Technical Documentation

List of Figures

		Page No
Fig 1	Hand portables	4
Fig 2	Desktop option	5
Fig 3	Express Car Kit (CARK-124)	6

Product Selection

Hand portables

The NSB-7 is a single band hand portable mobile telephone for the GSM1900 networks

Figure 1: Hand portables

ltem	Name:	Type Code:	Material Code:
1.	Transceiver	See Product	Variants
2.	Standard Battery (Li-ion 650 mAh)	BLB-2	0670246
	Standard Battery (Li-ion 650 mAh) for Americas	BLB-2	0670322
3.	AC Travel Charger (Euro plug) 207-253 Vac	ACP-7E	0675144
4.	AC Travel Charger (US plug) 108-132 Vac	ACP-7U	0675143
	AC Travel Charger (US plug) 198-242 Vac	ACP-7C	0675158
5.	AC Travel Charger (UK plug) 207-253 Vac	ACP-7X	0675145
	AC Travel Charger (UK plug) 180-220 Vac	ACP-7H	0675146
6.	AC Travel Charger (Australia plug) 216-264 Vac	ACP-7A	0675148
7.	Performance Travel Charger Euro plug 90-264 Vac	ACP-8E	0675195
	Performance Travel Charger Korea plug 90-264 Vac	ACP-8K	0675199
8.	Performance Travel Charger UK plug 90-264 Vac	ACP-8X	0675197
9.	Performance Travel Charger US plug 90-264 Vac	ACP-8U	0675196
	Performance Travel Charger China plug 90-264 Vac	ACP-8C	0675211
10.	Performance Travel Charger Australia plug 90-264 Vac	ACP-8A	0675214

Desktop Option

The desktop option allows the user to charge the phone from the mains.

Figure 2: Desktop option

ltem	Name:	Type Code:	Material Code:
1.	Transceiver	See Product	Variants
2	Desk stand	DCV-1B	0675220
3.	AC Travel Charger (Euro plug) 207-253 Vac	ACP-7E	0675144
4.	AC Travel Charger (US plug) 108-132 Vac	ACP-7U	0675143
	AC Travel Charger (US plug) 198-242 Vac	ACP-7C	0675158
5.	AC Travel Charger (UK plug) 207-253 Vac	ACP-7X	0675145
	AC Travel Charger (UK plug) 180-220 Vac	ACP-7H	0675146
6.	AC Travel Charger (Australia plug) 216-264 Vac	ACP-7A	0675148
7.	Performance Travel Charger Euro plug 90-264 Vac	ACP-8E	0675195
	Performance Travel Charger Korea plug 90-264 Vac	ACP-8K	0675199
8.	Performance Travel Charger UK plug 90-264 Vac	ACP-8X	0675197
9.	Performance Travel Charger US plug 90-264 Vac	ACP-8U	0675196
	Performance Travel Charger China plug 90-264 Vac	ACP-8C	0675211
10.	Performance Travel Charger Australia plug 90-264 Vac	ACP-8A	0675214

Express Car Kit (CARK-124) Option for Americas

Figure 3: Express Car Kit (CARK-124)

	Item Name:	Type Code:	Material Code:
	Express Car Kit for Americas (Retail Pack)	CARK-124	0080372
1.	Transceiver (Not included, see Product Variants)		
2.	Pocket Clip	SKB-2	0720218
3.	Swivel Mount	HHS-12	0620054
4.	Hands Free Microphone	HFM-8	0690016
5.	Hands Free Cigarette Lighter Charger	PPH-1	0675182

Product and Module List

Unit/Type:	Product Code:
Transceiver NSB-7	See Product Variants
Standard Battery BLB-2 (Li-ion 650 mAh)	0670246
Standard Battery BLB-2 (Li-ion 650 mAh) for Americas	0670322
AC Travel Charger ACP-7E (EURO) 207-253 Vac	0675144
AC Travel Charger ACP-7U (US) 108-132 Vac	0675143
AC Travel Charger ACP-7C (US) 198-242 Vac	0675158
AC Travel Charger ACP-7X (UK) 207-253 Vac	0675145
AC Travel Charger ACP-7H (UK) 180-220 Vac	0675146
AC Travel Charger ACP-7A (AUS) 216-264 Vac	0675148
Performance Travel Charger ACP-8E (EURO) 90-264 Vac	0675195
Performance Travel Charger ACP-8K (KOREA) 90-264 Vac	0675199
Performance Travel Charger ACP-8X (UK) 90-264 Vac	0675197
Performance Travel Charger ACP-8U (US) 90-264 Vac	0675196
Performance Travel Charger ACP-8C (CHINA) 90-264 Vac	0675211
Performance Travel Charger ACP-8A (AUS) 90-264 Vac	0675214
Headset HDC-5	0694059
Loopset LPS-3	0630244
Pocket Clip SKB-2	0720218
Desk Stand DCV-1B	0675220
Swivel Mount HHS-12	0620054
HF Microphone HFM-8	0690016
Plug & Play HF Cigarette Lighter Charger PPH-1	0675182
Cigarette Lighter Charger LCH-8	0675231
Cigarette Lighter Charger LCH-9	0675120
Carrying Case CBK-3V	0272237
Carrying Case CBK-3H	0272236

Technical Specifications

General Specifications of Transceiver NSB-7

Parameter	Unit
Cellular System	GSM1900
RX frequency band	19301990 MHz
TX frequency band	18501910 MHz
Output power	+0+29 dBm / 1.0 mW1 W
Duplex spacing	80 MHz
Number of RF channels	299
Channel spacing	200 kHz
Number of TX power levels	16
Sensitivity, static channel	-102 dBm
Frequency error, static channel	< 0.1 ppm
RMS phase error	< 5.0 o
Peak phase error	< 20.0 o

Programmes After Market Services NSB-7 Series Transceivers

System Module

Table of Contents

stem Module	Page 1
Transceiver NSB-7	
Introduction	
Operational Modes	
Interconnection Diagram	7
System Module	
, Baseband Module	
Block Diagram	
Technical Summary	
Technical Specifications	10
Absolute Maximum Ratings	
DC Characteristics	
External and Internal Signals and Connections	
DC (charger) connector	10
Service Connector	11
Battery connector	11
SIM card connector	12
RTC backup battery	12
Functional Description	13
Power Distribution	
Battery Interface	
Battery charging	14
Startup Charging	14
Battery Overvoltage Protection	15
Battery Removal During Charging	
PWM	
Battery Identification	16
Battery Temperature	
Supply Voltage Regulators	19
Switched Mode Supply VSIM	21
Power Up and Power Down	22
Power up with charger	22
Power Up with the Power Switch (PWRONX)	23
Power Up by RTC	24
Power Up by IBI	24
Power Down	24
Modes of Operation	
Acting Dead	25
Active Mode	25
Sleep Mode	25
Charging	26
Watchdog	
Audio Control	27
PCM serial interface	27
Digital Control	
MAD2 WD1	
Memories	

MAD memory configuration	
Memory	
Program and Data Memory	
Work Memory	
MCU Memory Requirements	
MCU Memory Map	
Flash Programming	
COBBA GJP	
Real time clock	
RTC backup battery charging	
Security	
Baseband EMC Strategy	
Baseband Testing	
Alianments	41
Baseband Startup for Testing	42
RF Module	43
Shielding	43
Environmental Specifications	43
Normal and Extreme voltages	43
Temperature Conditions	43
Humidity	
Vibration	
FSD Strength	
Main Technical Specifications	44
Maximum Ratinos	
RE Frequency Plan	
DC Characteristics	
Regulators	
Control Signals	
Control Signals	
PE Characteristics	
USIVIT900 (FCST900)	
Output Dower Dequirements	
Output Power Requirements	
Output RF Spectrum due to modulation	
Spectrum due to switching transients	
Spurious Emissions (when allocated a channel)	
Spurious Emissions (late mode)	
Frequency Error and Phase Accuracy	
Receiver Characteristics	
Blocking Requirements	
Aivi Suppression Requirements	
Sensitivity, Inter modulation, Spurious Rejection and Emissions	
Reference Interference level	
KF Block Diagram	53
Frequency synthesizer	54
Keceiver	55
Iransmitter	56

Schematic Diagrams: RB9 (at the back of the binder)

Circuit Diagram of Power Supply (Version 05.21 Edit 64) for layout 5	A-1
Circuit Diagram of CPU Block (Version 05.21 Edit 45) for layout 5	A-2
Connection between RF and Baseband modules (Version 05.21 Edit 37) for layo	out 5 A-3
Baseband Block Interconnections (Version 05.21 Edit 40) for layout 5	A-4
Circuit Diagram of MAD Block (Version 05.21 Edit 27) for layout 5	A-5
Circuit Diagram of RF Block (Version 05.21 Edit 132) for layout 5	A-6
Circuit Diagram of UIF (Version 05.21 Edit 36) for layout 5	A-7
Circuit Diagram of Audio and RFI (Version 05.21 Edit 72) for layout 5	A-8
Circuit Diagram of IR Module (Version 05.21 Edit 23) for layout 5	A-9
Layout Diagram of RB9 -Top (Version 05.21)	A-10
Layout Diagram of RB9 - Bottom (Version 05.21)	A-10
Testpoints of RB9 - Top (Version 05.21)	A-11
Testpoints of RB9 - Bottom (Version 05.21)	A-12
RF Testpoints for RB9 - Circuit Diagram (Version 05.21 Edit132)	A-13
RF Testpoints of RB9 - Layout (Version 05.21)	A-14

List of Figures

		Page No
Fig 1	Block Diagram	
Fig 2	Block Diagram of Power Distribution	13
Fig 3	Charging Block Diagram	14
Fig 4	Output Overvoltage Protection (in principle; not in time scale)	15
Fig 5	Output Overvoltage Protection When Battery Removed (in principle)	16
Fig 6	BSI connections for all battery types	17
Fig 7	SIMCardDetX Detection Levels	18
Fig 8	Standard Battery BTEMP connection	19
Fig 9	Principle of the SMR Power Functions	22
Fig 10	Power Up With Charger	23
Fig 11	Power Up With Switch	24
Fig 12	Flash Programming Sequence	39
Fig 13	RF Frequency Plan	45
Fig 14	Power Distribution Diagram	47
Fig 15	RF Block Diagram	53
Fig 16	Phase Locked Loop	55
Fig 17	Power Control Loop Diagram	57

Transceiver NSB-7

Introduction

The NSB-7 is a single band transceiver unit designed for the GSM1900 networks. It is GSM1900 power class 1 (1W) transceiver.

The transceiver consists of System/RF module (RB9), Display module (UX7) and assembly parts.

The transceiver has a full graphic display and the user interface is based on a jack style UI with two soft keys.

A back mounted antenna is used, there is no connection to an external antenna.

The transceiver has a low leakage tolerant earpiece and an omnidirectional microphone, providing excellent audio quality. The transceiver supports full rate, an enhanced full rate and a half rate speech decoding.

An integrated IR link provides a connection between two NSB-7 transceivers or a transceiver and a PC (internal data), or a transceiver and a printer.

The small SIM (Subscriber Identity Module) card is located under the back cover of the phone.

Operational Modes

There are five different operational modes:

- power off mode
- idle mode
- active mode
- charge mode
- local mode

In the power off mode only the circuits needed for power up are supplied.

In the idle mode circuits are powered down and only the sleep clock is running.

In the active mode all the circuits are supplied with power although some parts might be in idle state part of the time.

The charge mode is effective in parallel with all previous modes. The charge mode itself consists of two different states, i.e. the fast charge and the maintenance mode.

The local mode is used for alignment and testing.

Interconnection Diagram

System Module

Baseband Module

The ASICs are in the uBGA package. Flash and SRAM chips are inside the same package. EEPROM is software emulated with Flash. These changes have decreased the number of I/O between the ICs. Smaller I/O count has made using smaller packages possible

The baseband architecture supports a power saving function called "sleep mode". This sleep mode shuts off the VCTCXO, which is used as system clock source for both RF and baseband. During the sleep mode the system runs from a 32 kHz crystal. The phone is waken up by a timer running from this 32 kHz clock supply. The sleeping time is determined by some network parameters. The sleep mode is entered when both the MCU and the DSP are in stand-by mode and the normal VCTCXO clock has been switched off.

The battery charging is controlled by a PWM signal from the CCONT. The PWM duty cycle is determined by a charging software and is fed to the CHAPS charging switch.

Two types of chargers can be connected to the phone. Standard chargers (two wires) provide a coarse supply power, which is switched by the CHAPS for suitable charging voltage and current. Advanced chargers (three wires) are equipped with a control input. Three wire chargers are treated like two wire ones.

TX/RX SIGNALS RE SUPPLIES PA SUPPLY 13MHz SYSTEM CLOCK CLK COBBA SUPPLY SIM CCONT COBBA 32kHz BB SUPPLY CLK SLEEP CLOCK υı MAD VBAT IR MEMORIES BATTERY CHAPS EXT. AUDIO BASEBAND Charger **HS-connector** connector

Block Diagram

Figure 1: Block Diagram

Technical Summary

The baseband module consists of four ASICs; CHAPS, CCONT, COBBA-GJP and MAD2WD1, which take care of the baseband functions of the engine.

The baseband is running from a 2.8V power rail, which is supplied by a power controlling ASIC CCONT. MAD2WD1 supply voltages are VBB and VCORE (V2V), VBB feed I/O pins so that MAD2WD1 is externally fully compatible with old versions. VCORE feed MAD2WD1 internal functions supply voltage; CPU, DSP and system logic. In the CCONT there are 6 individually controlled regulator outputs for RF-section and two outputs for the baseband. In addition there is one +5V power supply output (V5V). The CCONT contains also a SIM interface, which supports both 3V and 5V SIM-cards. A real time clock function is integrated into the CCONT, which utilizes the same 32kHz clock supply as the sleep clock. A backup power supply is provided for the RTC, which keeps the real time clock running when the main battery is removed. The backup power supply is a rechargable battery. The backup time with the battery is ten minutes minimum.

The analog interface between the baseband and the RF section is handled by a COBBA ASIC. COBBA provides A/D and D/A conversion of the in-phase and quadrature receive and transmit signal paths and also A/D and D/A conversions of received and transmitted audio signals to and from the user interface. The COBBA supplies the analog TXC and AFC signals to RF section according to the MAD DSP digital control. Data transmission between the COBBA and the MAD is implemented using serial bus for high speed signal-ling and for PCM coded audio signals. Digital speech processing is handled by the MAD ASIC. COBBA is a dual voltage circuit, the digital parts are running from the baseband supply VBB and the analog parts are running from the analog supply VCOBBA.

The baseband supports both internal and external microphone inputs and speaker outputs. Input and output signal source selection and gain control is done by the COBBA according to control messages from the MAD. Keypad tones, DTMF and other audio tones are generated and encoded by the MAD and transmitted to the COBBA for decoding. A buzzer and an external vibra alert control signals are generated by the MAD with separate PWM outputs.

EMC shielding is implemented using a metallized plastic frame. On the other side the engine is shielded with PCB grounding. Heat generated by the circuitry will be conducted out via the PCB ground planes.

Technical Specifications

Absolute Maximum Ratings

Parameter	Rating
Battery voltage	-0.3 5.3 V
Charger input voltage	-5.0 16V

DC Characteristics

Line Symbol	Minimum	Typical / Nominal	Maximum	Unit / Notes
Supply battery voltage	3.0	3.9	4.8	V
Battery powerup voltage (HW)	2.9	3.0	3.1	V
Battery cut off voltage (HW)	2.7	2.8	2.9	V (3.1 V SW cutoff)
Regulated baseband supply volt- age	2.7	2.8	2.85	V
Regulated baseband supply cur- rent	3	50	125	mA
COBBA analog supply voltage	2.7	2.8	2.85	V
COBBA analog supply current	5	20	100	mA
Regulated 5V supply voltage	4.8	5.0	5.2	V
Regulated 5V supply current	0	1	30	mA
Regulated 5V SIM supply voltage	4.8	5.0	5.2	V
Regulated 5V SIM supply current	3	10	30	mA
Regulated 3V SIM supply voltage	2.8	3.0	3.2	V
Regulated 3V SIM supply current	1	6	30	mA
Voltage reference	1.4775	1.5	1.5225	V

External and Internal Signals and Connections

This section describes the external electrical connection and interface levels on the baseband. The electrical interface specifications are collected into tables that covers a connector or a defined interface.

DC (charger) connector

DC (charger) connector is physically integrated in the same component with the acces-

sory interface connector. DC connector has both jack and contact pads for desk stand.

Name	Min	Тур	Max	Unit	Notes
VIN	0		12	V	
	0		850	mA	
L_GND	0		0.3	V	

Service Connector

Name	Parameter	Min	Тур	Max	Unit	Remark
MBUS	Serial clock from the Prommer	0 2.0	logic low logic low	0.8 2.85	V	Prommer detection and Serial Clock for synchronous communi- cation
FBUS_RX	Serial data from the Prommer	0 2.0	logic low logic high	0.8 2.85	V	Receive Data from Prommer to Baseband
FBUS_TX	Data acknowledge to the Prommer	0 2.0	logic low logic high	0.5 2.85	V	Transmit Data from Baseband to Prommer
GND	GND	0		0	V	Ground

The service connector is used as a flash programming interface for updating (i.e. re-programming) the flash program memory and an electrical access for services to the engine.

When the flash prommer is connected to the phone supply power is provided through the battery contacts and the phone is powered up with a pulse given to the BTEMP line.

Battery connector

The BSI contact on the battery connector is used to detect when the battery is to be removed to be able to shut down the operations of the SIM card before the power is lost if the battery is removed with power on. The BSI contact disconnects earlier than the supply power contacts to give enough time for the SIM and LCD shut down.

Name	Min	Тур	Max	Unit	Notes
VBATT	3.0	3.9	4.2	V	Battery voltage
BSI	0		2.85	V	Battery size indication Phone has 100kohm pull-up resistor. SIM Card removal detection (Threshold is 2.4V@VBB=2.8V)
		68		kohm	Battery indication resistor (BLB-2)
				kohm	Battery indication resistor (service battery)

PAMS Technical Documentation

Name	Min	Тур	Max	Unit	Notes
BTEMP	0		1.4	V	Battery temperature indication Phone has a 100k (+/-5%) pull-up resistor, Battery package has a NTC pull-down resistor: 47k +/-5%@+25C, B=4050 +/- 3%
	2.1 5	10	3 30	V ms	Phone power up by battery (input) Power up pulse width
	0		1	kohm	Local mode initialization (in production)
BGND	0		0	V	Battery ground

SIM card connector

The SIM card connector is located on the engine beside the battery pack.

Pin	Name	Parameter	Min	Тур	Max	Unit	Notes
4	GND	GND	0		0	V	Ground
3, 5	VSIM	5V SIM Card 3V SIM Card	4.8 2.8	5.0 3.0	5.2 3.2	V	Supply voltage
6	DATA	5V Vin/Vout 3V Vin/Vout	4.0 0 2.8 0	"1" "0" "1" "0"	VSIM 0.5 VSIM 0.5	V	SIM data Trise/Tfall max 1us
2	SIMRST	5V SIM Card 3V SIM Card	4.0 2.8	"1" "1"	VSIM VSIM	V	SIM reset
1	SIMCLK	Frequency Trise/Tfall		3.25	25	MHz ns	SIM clock

RTC backup battery

The RTC block in CCONT needs a power backup to keep the clock running when the phone battery is disconnected. The backup power is supplied from a rechargable Li-ion battery that can keep the clock running ten minutes minimum. The backup battery is charged from the main battery through CHAPS.

Signal	Parameter	Min	Тур	Max	Unit	Notes
VBACK	Backup battery charging from CHAPS	3.02	3.15	3.28	V	
	Backup battery charging from CHAPS	100	200	500	uA	Vout@VBAT-0.2V
VBACK	Backup battery supply to CCONT	2		3.28	V	

Signal	Parameter	Min	Тур	Max	Unit	Notes
	Backup battery supply to CCONT		80		uA	

Functional Description

Power Distribution

In normal operation the baseband is powered from the phone's battery. The battery consists of one Lithium-Ion cell. An external charger can be used for recharging the battery and supplying power to the phone.

The baseband contains parts that control power distribution to whole phone excluding those parts that use continuous battery supply. The battery feeds power directly to the CCONT and UI (buzzer and display and keyboard lights).

The power management circuit CHAPS provides protection against over voltages, charger failures and pirate chargers etc. that would otherwise cause damage to the phone.

Charger & headset connector

Battery Interface

Battery charging

The electrical specifications give the idle voltages produced by the acceptable chargers at the DC connector input. The absolute maximum input voltage is 30V due to the transient suppressor that is protecting the charger input. At phone end there is no difference between a plug-in charger or a desktop charger. The DC-jack pins and bottom connector charging pads are connected together inside the phone.

Startup Charging

When a charger is connected, the CHAPS is supplying a startup current minimum of 130mA to the phone. The startup current provides initial charging to a phone with an empty battery. Startup circuit charges the battery until the battery voltage level is reaches 3.0V (+/- 0.1V) and the CCONT releases the PURX reset signal and program execution starts. Charging mode is changed from startup charging to PWM charging that is controlled by the MCU software. If the battery voltage reaches 3.55V (3.75V maximum) before the program has taken control over the charging, the startup current is switched off. For accessory detection, startup current is possible cut via CCUT line. The startup current is switched on again when the battery voltage is sunken 100mV (nominal).

Parameter	Symbol	Min	Тур	Max	Unit
VOUT Start-up mode cutoff limit	Vstart	3.45	3.55	3.75	V
VOUT Start-up mode hysteresis NOTE: Cout=4.7 uF	Vstarthys	80	100	200	mV
Start-up regulator output current VOUT=0VVstart	lstart	130	165	200	mA

Battery Overvoltage Protection

Output overvoltage protection is used to protect phone from damage. This function is also used to define the protection cutoff voltage for the Lithium-Ion battery. The power switch is immediately turned OFF if the voltage in VOUT rises above the selected limit VLIM.

Parameter	Symbol	LIM input	Min	Тур	Max	Unit
Output voltage cutoff limit (dur- ing transmission or Li-battery)	VLIM	LOW	4.4	4.6	4.8	V

The voltage limit (VLIM1 or VLIM2) is selected by logic LOW or logic HIGH on the CHAPS (N101) VLIM input pin.

When the switch in output overvoltage situation has once turned OFF, it stays OFF until the battery voltage falls below VLIM and PWM = LOW is detected. The switch can be turned on again by setting PWM = HIGH.

Figure 4: Output Overvoltage Protection (in principle; not in time scale)

Battery Removal During Charging

Output overvoltage protection is also needed in case the main battery is removed when charger connected or charger is connected before the battery is connected to the phone.

With a charger connected, if VOUT exceeds VLIM, CHAPS turns switch OFF until the charger input has sunken below Vpor (nominal 3.0V, maximum 3.4V). MCU software will stop the charging (turn off PWM) when it detects that battery has been removed. The CHAPS remains in protection state as long as PWM stays HIGH after the output overvoltage situation has occured.

- is still HIGH) and VOUT again exceeds VLIM(X).
- 4. Software sets PWM = LOW -> CHAPS does not enter PWM mode
- 5. PWM low -> Startup mode, startup current flows until Vstart limit reached
- 6. VOUT exceeds limit Vstart, Istart is turned off
- 7. VCH falls below Vpor

PWM

When a charger is used, the power switch is turned ON and OFF by the PWM input. PWM rate is 1Hz. When PWM is HIGH, the switch is ON and the output current lout = charger current - CHAPS supply current. When PWM is LOW, the switch is OFF and the output current lout = 0. To prevent the switching transients inducing noise in audio circuitry of the phone soft switching is used.

Battery Identification

Different battery types are identified by a pulldown resistor inside the battery pack. The BSI line inside transceiver has a 100k pull-up to VBB. The MCU can identify the battery

by reading the BSI line DC-voltage level with a CCONT (N100) A/D-converter.

Name	Min	Тур	Max	Unit	Notes
BSI	0		2.8	V	Battery size indication 100k pull-up resistor to VBB in phone SIM Card removal detection (Threshold is 2.4V@VBB=2.8V)
		68		kohm	Indication of a BLB-2 battery (600mAh Li-Ion)
		22		kohm	Indication resistor for a service battery
	-5		5	0/ ₀	Indication resistor and pull-up resistor tolerance

Figure 6: BSI connections for all battery types

The battery identification line is used also for battery removal detection. The BSI line is connected to a SIMCardDetX line of MAD2. SIMCardDetX is a threshold detector with a nominal input switching level 0.85xVcc for a rising edge and 0.55xVcc for a falling edge. The battery removal detection is used as a trigger to power down the SIM card before the power is lost. The BSI contact in the battery contact disconnects before the other con-

tacts so that there is a delay between battery removal detection and supply power off.

Figure 7: SIMCardDetX Detection Levels

Battery Temperature

The battery temperature is measured with a NTC inside the battery pack. The BTEMP line inside transceiver has a 100k pull-up to VREF. The MCU can calculate the battery temperature by reading the BTEMP line DC-voltage level with a CCONT (N100) A/D-converter.

Pin	Name	Min	Тур	Max	Unit	Notes
3	BTEMP	0		1.4	V	Battery temperature indication 100k pull-up resistor to VREF in phone Battery package has NTC pull-down resistor: 47k +/-5%@+25C, B=4050 +/-3%
		2.1 5	10	3 20	V ms	Phone power up by battery (input) Power up pulse width
			47		Kohm	Service battery value
		-5		5	0/0	100k pull-up resistor tolerance

Figure 8: Standard Battery BTEMP connection

Based on 47 kohm \pm 5 % NTC with B = 4090 \pm 1.5 %. Without any alignment, with that and 1 % pull-up resistor, \pm 2.5 _C accuracy is achieved between - 20 and +60 _C (\pm 3.5 _C @ -40 ... +85 _C).

Supply Voltage Regulators

The heart of the power distribution is the CCONT. It includes all the voltage regulators and feeds the power to the whole system. The baseband digital parts are powered from the VBB regulator which provides 2.8V baseband supply. The baseband regulator is active always when the phone is powered on. The VBB baseband regulator feeds MAD and memories, VCORE for MAD core, COBBA digital parts and the LCD driver in the UI section. There is a separate regulator for a SIM card. The regulator is selectable between 3V and 5V and controlled by the SIMPwr line from MAD to CCONT. The COBBA analog parts are powered from a dedicated 2.8V supply VCOBBA. The CCONT supplies also 5V for RF and for flash VPP. The CCONT contains a real time clock function, which is powered from a RTC backup when the main battery is disconnected. The RTC backup is rechargable polyacene battery. The battery is charged from the main battery voltage by the CHAPS when the main battery voltage is over 3.2V.

Operating Mode	Vref	RF REG	VCOBBA	VBB	VSIM	SIMIF	Vcore
Power off	Off	Off	Off	Off	Off	Pull-down	Off
Power on	On	On/Off	On	On	On	On/Off	On
Reset	On	Off VR1 On	On	On	Off	Pull-down	On
Sleep	On	Off	Off	On	On	On/Off	On

NOTE: COBBA regulator is off in SLEEP mode. Its output pin may be fed from V_{BB} in SLEEP mode by setting bit RFReg(5) to'1' (default).

CCONT includes also five additional 2.8V regulators providing power to the RF section. These regulators can be controlled either by the direct control signals from MAD or by the RF regulator control register in CCONT which MAD can update. Below are the listed the MAD control lines and the regulators they are controlling.

- TxPwr controls VTX regulator (VR5)
- RxPwr controls VRX regulator (VR2)
- SynthPwr controls all the rf regulators except VR1
- VCXOPwr controls VXO regulator (VR1)

CCONT generates also a 1.5 V reference voltage VREF to COBBA. The VREF voltage is also used as a reference to some of the CCONT A/D converters.

In addition to the above mentioned signals MAD includes also TXP control signal which goes to HAGAR power control block. The transmitter power control TXC is led from COBBA to HAGAR.

Characteristics	Condition	Min	Тур	Max	Unit
Output current VR1-VR6	Vout@2.8V			100	mA
Output current VR7 Depends on external BJT	Vout@2.8V			150	mA
Output current VR7BASE Base current limit	Vout@2.8V			-10	mA
Output current VBB On	Vout@2.8V			125	mA
Output current VBB Sleep Current limit 5mA	Vout@2.8V			1	mA
Output voltage VR1-VR7	over full temperature, input voltage and load range	2.7	2.8	2.85	V
Output voltage VBB	over full temperature, input voltage and load range	2.7	2.8	2.85	V
Output voltage V2V (VCORE)	Programmable: Vout=1.3V+225mV*n N = 0,1,2,3,4,5,6	1.30		2.65	V
Output voltage V2V (VCORE) tolerance		-5		+5	%
Line regulation (not VBB)	F v 10kHz, 2) VBAT>3.15V	49			DB

Characteristics	Condition	Min	Тур	Max	Unit
Line regulation (not VBB)	F v 100kHz, 2) VBAT>3.15v	40			DB
Line regulation VBB, V2V (VCORE)	F v 100kHz 2)	30			DB
Load regulation	T = 25_C		0.6	1	mV/mA
Supply current (each regu- lator) VR1VR7	ON mode		l _{out} / 60+330	l _{out} / 10+540	mA
Supply current VBB	ON mode		l _{out} /60+ 250	l _{out} /10+ 400	mA
Supply current VBB	SLEEP mode		l _{out} /60+ 100	l _{out} /10+ 150	mA
Output voltage V2V (VCORE)	MAD2WD1 C10 MAD2WD1 C07 MAD2WD1 C05		2.65 1.75 1.75		V

NOTE 1: Characteristics above are NOT valid if Vbat < 3.0V. NOTE 2: Line regulation is 20dB for f<100kHz when battery voltage is lower than 3.1V.

Switched Mode Supply VSIM

There is a switched mode supply for SIM-interface. SIM voltage is selected via serial IO. The 5V SMR can be switched on independently of the SIM voltage selection, but can't be switched off when VSIM voltage value is set to 5V.

Characteristics	Condition	Min	Тур	Max	Unit
Output voltage VSIM	Over temperature Over current	2.8 4.8	3.0 5.0	3.2 5.2	V
Output voltage V5V	Over temp & current	4.8	5.0	5.2	V
Output voltage V5V_2	Over temperature	5.0		6.0	V
Output current VSIM	Continuous DC			30	mA
Output current V5V	Continuous DC			30	mA
Current consumption VSIM	on sleep		200 100	330 150	uA uA

NOTE: VSIM and V5V can give together a total of 30mA.

In the next figure the principle of the SMR / VSIM-functions is shown.

Figure 9: Principle of the SMR Power Functions

Power Up and Power Down

The baseband is powered up by:

1 Pressing the power key, that generates a PWRONX interrupt signal from the power key to the CCONT, which starts the power up procedure.

2 Connecting a charger to the phone. The CCONT recognizes the charger from the VCHAR voltage and starts the power up procedure.

3 A RTC interrupt. If the real time clock is set to alarm and the phone is switched off, the RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is connected to the PWRONX line to give a power on signal to the CCONT just like the power key.

4 A battery interrupt. Intelligent battery packs have a possibility to power up the phone. When the battery gives a short (10ms) voltage pulse through the BTEMP pin, the CCONT wakes up and starts the power on procedure.

Power up with charger

When the charger is connected CCONT will switch on the CCONT digital voltage as soon as the battery voltage exceeds 3.0V. The reset for CCONT's digital parts is released when the operating voltage is stabilized (50 us from switching on the voltages). Operating voltage for VCXO is also switched on. The counter in CCONT digital section will keep MAD in reset for 62 ms (PURX) to make sure that the clock provided by VCXO is stable. After this delay MAD reset is released, and VCXO -control (SLEEPX) is given to MAD. The next diagram explains the power on procedure with charger (the picture assumes empty
battery, but the situation would be the same with full battery):

1: Battery voltage over 3.0==>Digital voltages to CCONT (VBB) 2: CCONT digital reset released. VCXO turned on 3: 62ms delay before PURX released

Figure 10: Power Up With Charger

When the phone is powered up with an empty battery pack using the standard charger, the charger may not supply enough current for standard powerup procedure and the powerup must be delayed.

Power Up with the Power Switch (PWRONX)

When the power on switch is pressed the PWRONX signal will go low. CCONT will switch on the CCONT digital section and VCXO as was the case with the charger driven power up. If PWRONX is low when the 64 ms delay expires, PURX is released and SLEEPX control goes to MAD. If PWRONX is not low when 64 ms expires, PURX will not be released, and CCONT will go to power off (digital section will send power off signal to analog parts)

1:Power switch pressed ==> Digital voltages on in CCONT (VBB) 2: CCONT digital reset released. VCXO turned on 3: 62 ms delay to see if power switch is still pressed.

Power Up by RTC

RTC (internal in CCONT) can power the phone up by changing RTCPwr to logical 1.

Power Up by IBI

IBI can power CCONT up by giving a short pulse (10ms) through the BTEMP line. After powerup BTEMP will act as any other input channel for ADC.

When the PURX reset is released, the MAD releases the system reset ExtSysResetX and the internal MCUResetX signals and starts the boot program execution from MAD bootrom if MAD GenSDIO pin is pulled low or from external memory if GenSDIO pin is pulled high. In normal operation the program execution continues from the flash program memory. If the MBUS line is pulled low during the power up the bootrom starts a flash programming sequence and waits for the prommer response through FBUS_RX line.

Power Down

The baseband is powered down by:

1 Pressing the power key, that is monitored by the MAD, which starts the power down procedure.

2 If the battery voltage is dropped below the operation limit, either by not charging it or by removing the battery.

3 Letting the CCONT watchdog expire, which switches off all CCONT regulators and

the phone is powered down.

4 Setting the real time clock to power off the phone by a timer. The RTC generates an interrupt signal, when the alarm is gone off. The RTC interrupt signal is connected to the PWRONX line to give a power off signal to the CCONT just like the power key.

The power down is controlled by the MAD. When the power key has been pressed long enough or the battery voltage is dropped below the limit the MCU initiates a power down procedure and disconnects the SIM power. Then the MCU outputs a system reset signal and resets the DSP. If there is no charger connected the MCU writes a short delay to CCONT watchdog and resets itself. After the set delay the CCONT watchdog expires, which activates the PURX and all regulators are switched off and the phone is powered down by the CCONT.

If a charger is connected when the power key is pressed the phone enters into the acting dead mode.

Modes of Operation

Acting Dead

If the phone is off when the charger is connected, the phone is powered on but enters a state called "acting dead". To the user the phone acts as if it was switched off. A battery charging alert is given and/or a battery charging indication on the display is shown to acknowledge the user that the battery is being charged.

Active Mode

In the active mode the phone is in normal operation, scanning for channels, listening to a base station, transmitting and processing information. All the CCONT regulators are operating. There are several sub-states in the active mode depending on if the phone is in burst reception, burst transmission, if DSP is working etc.

Sleep Mode

In the sleep mode all the regulators except the baseband VBB and the SIM card VSIM regulators are off. Sleep mode is activated by the MAD after MCU and DSP clocks have been switched off. The voltage regulators for the RF section are switched off and the VCXO power control, VCXOPwr is set low. In this state only the 32 kHz sleep clock oscillator in CCONT is running. The flash memory power down input is connected to the Ext-SysResetX signal, and the flash is deep powered down during the sleep mode.

The sleep mode is exited either by the expiration of a sleep clock counter in the MAD or by some external interrupt, generated by a charger connection, key press, headset connection etc. The MAD starts the wake up sequence and sets the VCXOPwr and ExtSysResetX control high. After VCXO settling time other regulators and clocks are enabled for active mode.

If the battery pack is disconnect during the sleep mode, the CCONT pulls the SIM interface lines low as there is no time to wake up the MCU.

Charging

Charging can be performed in any operating mode. The battery type/size is indicated by a resistor inside the battery pack. The resistor value corresponds to a specific battery capacity. This capacity value is related to the battery technology as different capacity values are achieved by using different battery technology.

The battery voltage, temperature, size and current are measured by the CCONT controlled by the charging software running in the MAD.

The power management circuitry controls the charging current delivered from the charger to the battery. Charging is controlled with a PWM input signal, generated by the CCONT. The PWM pulse width is controlled by the MAD and sent to the CCONT through a serial data bus. The battery voltage rise is limited by turning the CHAPS switch off when the battery voltage has reached 4.2 V. Charging current is monitored by measuring the voltage drop across a 220 mohm resistor.

Watchdog

The Watchdog block inside CCONT contains a watchdog counter and some additional logic which are used for controlling the power on and power off procedures of CCONT. Watchdog output is disabled when WDDisX pin is tied low. The WD–counter runs during that time, though. Watchdog counter is reset internally to 32 s at power up. Normally it is reset by MAD writing a control word to the WDReg.

Audio Control

PCM serial interface

The interface consists of following signals: a PCM codec master clock (PCMDClk), a frame synchronization signal to DSP (PCMSClk), a codec transmit data line (PCMTX) and a codec receive data line (PCMRX). The COBBA-GJP generates the PCMDClk clock, which is supplied to DSP SIO. The COBBA-GJP also generates the PCMSClk signal to DSP by dividing the PCMDClk. The PCMDClk frequency is 512 kHz. PCMSClk frequency is 8.0 kHz.

PCMDCIk		
PCMSCIk	_///	,
PCMTxData	X sign extended XMSBX X X ////////////////////////////////	
PCMRxData	<u>15 14 13 12 11 10 /// X sign extended ∑MSB</u> X X X ////////////////////////////////	

Digital Control

The baseband functions are controlled by the MAD ASIC, which consists of a MCU, a system ASIC and a DSP. MAD with the GSM/PCN specific ASIC is named to MAD2.

MAD2 WD1

MAD2 WD1 contains following building blocks:

- ARM RISC processor with both 16-bit instruction set (THUMB mode) and 32-bit instruction set (ARM mode)

- TI Lead DSP core with peripherals:
- API (Arm Port Interface memory) for MCU-DSP communication, DSP code download, MCU interrupt handling vectors (in DSP RAM) and DSP booting.
- Serial port (connection to PCM)
- Timer
- DSP memory
- BUSC (BusController for controlling accesses from ARM to API, System Logic and MCU external memories, both 8- and 16-bit memories)
- System Logic
- CTSI (Clock, Timing, Sleep and Interrupt control)
- MCUIF (Interface to ARM via BUSC). Contains MCU BootROM
- DSPIF (Interface to DSP)
- MFI (Interface to COBBA AD/DA Converters)
- CODER (Block encoding/decoding and A51&A52 ciphering)
- AccIF (Accessory Interface)
- SCU (Synthesizer Control Unit for controlling 2 separate synthesizer)
- UIF (Keyboard interface, serial control interface for COBBA PCM Codec, LCD Driver and CCONT)
- SIMI (SimCard interface with enhanced features)
- PUP (Parallel IO, USART and PWM control unit for vibra and buzzer)
- Flexpool

The MAD2 operates from a 13 MHz system clock, which is generated from the 13Mhz VCXO frequency. The MAD2 supplies a 6,5 MHz or a 13 MHz internal clock for the MCU and system logic blocks and a 13 MHz clock for the DSP, where it is multiplied to 45.5 MHz DSP clock. The system clock can be stopped for a system sleep mode by disabling the VCXO supply power from the CCONT regulator output. The CCONT provides a 32 kHz sleep clock for internal use and to the MAD2, which is used for the sleep mode timing. The sleep clock is active when there is a battery voltage available i.e. always when the battery is connected.

MAD2WD1 supply voltages are VBB and VCORE (V2V), VBB feed I/O pins so that MAD2WD1 is externally fully compatible with old versions. VCORE feed MAD2WD1 internal functions supply voltage; CPU, DSP and system logic.

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
A1	MCUGemIO 0	0		2	0		MCU General pur- pose output port
C2	LEADGND						Lead Ground
D2	Col4	I/O	UIF	2	Input	Programma- ble pullup PR0201	I/O line for keyboard column 4
D3	Col3	I/O	UIF	2	Input	Programma- ble pullup PR0201	I/O line for keyboard column 3
H11	MCUGenI01	I/O		2	lnput, pullup	Pullup PR0201	General purpose I/O port
E4	GND						Ground
D4	Col2	I/O	UIF	2	Input	Programma- ble pullup PR0201	I/O line for keyboard column 2
C4	Col1	I/O	UIF	2	Input	programma- ble pullup PR0201	I/O line for keyboard column 1
Сз	ColO	I/O	UIF	2	Input	programma- ble pullup PR0201	I/O line for keyboard column 0
D1	LCDCSX	I/O	UIF	2	Input	external pul- lup/down	serial LCD driver chip select, parallel LCD driver enable
E1	LEADVCC						Lead Power
F12	LoByteSelX						NC

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
E3	Row5LCDCD	1/0	UIF	2	Input, pullup	pullup PRO201	Keyboard row5 data I/O, serial LCD driver command/data indi- cator, parallel LCD driver read/write select
N4	VCC_CORE					Core VCC in 3325c10	Power
E2	Row4	1/0	UIF	2	lnput, pullup	pullup PR0201	I/O line for keyboard row 4, parallel LCD driver register selec- tion control
F4	Row3	I/O	UIF	2	lnput, pullup	pullup PR0201	I/O line for keyboard row 3, parallel LCD driver data
F3	Row2	I/O	UIF	2	lnput, pullup	pullup PR0201	I/O line for keyboard row 2, parallel LCD driver data
F2	Row1	I/O	UIF	2	lnput, pullup	pullup PR0201	I/O line for keyboard row 1, parallel LCD driver data
F1	RowO	I/O	UIF	2	lnput, pullup	pullup PR0201	I/O line for keyboard row 0, parallel LCD driver data
L11	JTDO	0		2	Tri-state		JTAG data out
L5	GND						Ground
N12	JTRst	I			Input, pulldown	pulldown PD0201	JTAG reset
M12	JTCIk	I			Input	pulldown PD0201	JTAG Clock
N13	JTDI	I			Input, pullup	pullup PR0201	JTAG data in
M13	JTMS	I			Input, pullup	pullup PR0201	JTAG mode select
G13	VCC_IO					IO VCC in 3325c10	Power
L12	CoEmu0	I/O		2	Input, pullup	pullup PR0201	DSP/MCU emulation port 0
L13	CoEmu1	I/O		2	Input, pullup	pullup PR0201	DSP/MCU emulation port 1
H4	LEADGND						Lead Ground

NOKIA

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
L1	ARMGND						ARM Ground
N3	MCUAd0	0	MCU MEMORY	2	0		MCU address bus
K4	ARMVCC						ARM Power
N2	MCUAd1	0	MCU MEMORY	2	0		MCU address bus
N1	MCUAd2	0	MCU MEMORY	2	0		MCU address bus
M4	MCUAd3	0	MCU MEMORY	2	0		MCU address bus
МЗ	MCUAd4	0	MCU MEMORY	2	0		MCU address bus
M2	MCUAd5	0	MCU MEMORY	2	0		MCU address bus
M1	MCUAd6	0	MCU MEMORY	2	0		MCU address bus
H1	VCC_IO					10 VCC in 3325c10	Power
L4	MCUAd7	0	MCU MEMORY	2	0		MCU address bus
L3	MCUAd8	0	MCU MEMORY	2	0		MCU address bus
L2	MCUAd9	0	MCU MEMORY	2	0		MCU address bus
K5	MCUAd10	0	MCU MEMORY	2	0		MCU address bus
J4	GND						Ground
Кз	MCUAd11	0	MCU MEMORY	2	0		MCU address bus
K2	MCUAd12	0	MCU MEMORY	2	0		MCU address bus
K1	MCUAd13	0	MCU MEMORY	2	0		MCU address bus
J3	MCUAd14	0	MCU MEMORY	2	0		MCU address bus
J2	MCUAd15	0	MCU MEMORY	2	0		MCU address bus

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
J1	MCUAd16	0	MCU MEMORY	2	0		MCU address bus
M10	VCC_CORE					Core VCC in 3325c10	Power
Нз	MCUAd17	0	MCU MEMORY	2	0		MCU address bus
H2	MCUAd18	0	MCU MEMORY	2	0		MCU address bus
G4	MCUAd19	0	MCU MEMORY	2	0		MCU address bus
G3	MCUAd20	0	MCU MEMORY	2	0		MCU address bus
G2	VCONT	0					
K6	ExtMCUDa0	I/O	MCU MEMORY	2	Input		MCU data bus
K9	GND						Ground
L6	ExtMCUDa1	I/O	MCU MEMORY	2	Output		MCU data bus
M6	ExtMCUDa2	I/O	MCU MEMORY	2	Output		MCU data bus
N6	ExtMCUDa3	I/O	MCU MEMORY	2	Output		MCU data bus
L7	ExtMCUDa4	I/O	MCU MEMORY	2	Output		MCU data bus
M7	ExtMCUDa5	I/O	MCU MEMORY	2	Output		MCU data bus
N7	ExtMCUDa6	I/O	MCU MEMORY	2	Output		MCU data bus
N8	ExtMCUDa7	I/O	MCU MEMORY	2	Output		MCU data bus
M8	MCUGenIODa 0	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
L8	MCUGenIODa 1	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
K8	MCUGenIODa 2	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
N9	MCUGenIODa 3	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port

NOKIA

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
E10	GND						Ground
M9	MCUGenIODa 4	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
L9	MCUGenIODa 5	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
N10	MCUGenIODa 6	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
L10	MCUGenIODa 7	I/O		2	Input	MCU Data in 16-bit mode	General purpose I/O port
M5	MCURdX	0	MCU MEMORY	2	1		MCU Read strobe
G11	VCC_CORE					Core VCC in 3325c10	Power
N5	MCUWrX	0	MCU MEMORY	2	1		MCU write strobe
N11	ROM1SelX	0	MCU ROM	2	1		ROM chip select
M11	RAMSelX	0	MCU RAM	2	1		RAM chip select
J11	IRON	0	IR Mod	2	1		IR control
A1	MCUGenI01	I/O		2	Input, pullup	pullup PR0201	General purpose I/O port
D8	DSPXF	0		2	1		External flag
K10	SCVCC						Special cell Power
K11	RFClk	I	VCX0		Input		System clock from VCTCXO
K12	RFClkGnd				Input		System clock refer- ence ground input
K13	SIMCardDetX	I			Input		SIM card detection
J10	SCGND						Special cell Ground
D9	BuzzPWM	0	BUZZER	2	0		Buzzer PWM control
D11	LEADVCC						LEAD Power
G12	VibraPWM	0	VIBRA	2	0		Vibra PWM control
С9	GND						Ground
E12	MCUGenIO3	I/O		2	Input, pullup	pullup PR1001	General purpose I/O port

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
E13	MCUGenI02	I/O		2	Input, pullup	pullup PR1001	General purpose I/O port
J13	KBLights	0	UIF	2	1		
C5	AccTxData	I/O		4	Tri- State	external pul- lup	Accessory TX data, Flash_TX
B6	VCC_IO					IO VCC in 3325c10	Power
F11	HookDet	I			Input		Non-MBUS acces- sory connection detector
F10	HeadDet	I			Input		Headset detection interrupt
D6	AccRxData	I			Input		Accessory RX data, Flash_RX
D5	GND						Ground
G10	MCUGenI04	I/O		2	Input, pulldown	pulldown PD1001	General purpose I/O port
B5	MBUS	1/0		2	Input, exter- nal pul- lup	external pullup	MBUS, Flash clock
E11	VCXOPwr	0	CCONT	2	1		VCXO regulator con- trol
D13	SynthPwr	0	CCONT	2	0		Synthesizer regula- tor control
B7	VCC_CORE					Core VCC in 3325c10	Power
C10	GenCCO- NTCSX	0	CCONT	2	1		Chip select to CCONT
F13	LEADGND						LEAD Ground
B10	GenSDIO	1/0	CCONT, UIF	2	Input, external pullup/ down	external pul- lup/down depending on how to boot	Serial data in/out
A10	GenSClk	0	CCONT, UIF	2	0		Serial clock
C11	SIMCardData	I/O	CCONT	2	0		SIM data
J12	GND						Ground
B13	PURX	I	CCONT		Input		Power Up Reset

NOKIA

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation	
B12	CCONTInt	I	CCONT		Input		CCONT interrupt	
A13	Clk32k	I	CCONT		Input		Sleep clock oscillator input	
D10	VCC_IO					IO VCC in 3325c10	Power	
A12	SIMCardClk	0	CCONT	2	0		SIM clock	
B11	SIMCardRstX	0	CCONT	2	0		SIM reset	
A11	SIMCardIOC	0	CCONT	2	0		SIM data in/out con- trol	
D12	SIMCardPwr	0	CCONT	2	0		SIM power control	
H10	LEADVCC						LEAD Power	
C13	RxPwr	0		2	0		(RX regulator control)	
C12	TxPwr	0		2	0		(TX regulator control)	
H12	TestMode	I			lnput, pulldown	pulldown PD0201	Test mode select	
H13	ExtSysResetX	0		2	0		System Reset	
B9	PCMTxData	0	СОВВА	2	0		Transmit data, DX	
K7	VCC_IO					IO VCC in 3325c10	Power	
A9	PCMRxData	I	COBBA		Input		Receive data, RX	
B8	PCMDClk	I	СОВВА		Input		Transmit clock, CLKX	
A8	PCMSCIk	I	COBBA		Input		Transmit frame sync, FSX	
C6	COBBACIk	0	COBBA	4	1		COBBA clock, 13 MHz	
A6	COBBACSX		СОВВА				СОВВА	
A7	COBBASD		СОВВА				СОВВА	
C7	IData		COBBA				СОВВА	
D7	QData		СОВВА				СОВВА	
G1	VCC_CORE					Core VCC in 3325c10	Power	
C1	DSPGenOut3	0	RF	2	0		DSP general purpose output	
B4	DSPGenOut2	0	RF	2	0		DSP general purpose output	

Pin No:	Pin Name	Pin Type	Connecte d to/ from	Drive req. mA	Reset State	Note	Explanation
A4	DSPGenOut1	0	RF	2	0		DSP general purpose output
A5	DSPGen0ut0	0	CRFU	2	0		DSP general purpose output
A3	FrACtrl	0	RF	2	0		RF front amplifier control
B3	SynthEna	0	HAGAR	2	0		Synthesizer data enable
B1	SynthClk	0	HAGAR	2	0		Synthesizer clock
B2	SynthData	0	HAGAR	2	0		Synthesizer data
A2	TxPA	0	HAGAR	2	0		Power amplifier con- trol

Memories

MAD memory configuration

The MAD2WD1 used in NSB-7 contains 16 kWords RAM, and 80 kWords ROM memory.

Memory

The MCU program code resides in an external flash program memory, which size is 16Mbits (1024k x 16bit). The MCU work (data) memory size is 2048 kbits (256k x 16bit). Flash and SRAM memory chips are packed in same combo memory package.

The BusController (BUSC) section in the MAD decodes the chip select signals for the external memory devices and the system logic. BUSC controls internal and external bus drivers and multiplexers connected to the MCU data bus. The MCU address space is divided into access areas with separate chip select signals. BUSC supports a programmable number of wait states for each memory range.

Program and Data Memory

The MCU program code resides in the program memory. The program memory is 16Mbits (1024k x 16bit) Flash memory.

The flash memory has a power down pin that should be kept low, during the power up phase of the flash to ensure that the device is powered up in the correct state, read only. The power down pin is utilized in the system sleep mode by connecting the ExtSysResetX to the flash power down pin to minimize the flash power consumption during the sleep.

Nonvolatile data memory is implemented with program (Flash) memory. Special EEPROM emulation (EEEMmu) software is utilized.

Work Memory

The work memory is a static RAM of size 2096k (256k \times 16). The memory contents are lost when the baseband voltage is switched off. All retained data must be stored into the data memory when the phone is powered down.

MCU Memory Requirements

Device	Organisation	Access Time ns	Wait States Used	Remarks
FLASH	1024kx16	120	1	uBGA 48
SRAM	256kx16	120	1	uBGA 48

MCU Memory Map

MAD2 supports maximum of 4GB internal and 4MB external address space. External memories use address lines MCUAd0 to MCUAd21 and 8-bit/16-bit databus. The BUSC bus controller supports 8- and 16-bit access for byte, double byte, word and double word data. Access wait states (0, 1 or 2) and used databus width can be selected separately for each memory block.

Flash Programming

The phone has to be connected to the flash loading adapter so that supply voltage for the phone and data transmission lines can be supplied from/to the adapter. When adapter switches supply voltage to the phone, the program execution starts from the BOOT ROM and the MCU investigates in the early start-up sequence if the flash prommer is connected. This is done by checking the status of the MBUS-line. Normally this line is high but when the flash prommer is connected the line is forced low by the prommer.

The flash prommer serial data receive line is in receive mode waiting for an acknowledgement from the phone. The data transmit line from the baseband to the prommer is initially high. When the baseband has recognized the flash prommer, the TX-line is pulled low. This acknowledgement is used to start to toggle MBUS (FCLK) line three times in order that MAD2 gets initialized. This must be happened within 15 ms after TX line is pulled low. After that the data transfer of the first two bytes from the flash prommer to the baseband on the RX-line must be done within 1 ms.

When MAD2 has received the secondary boot byte count information, it forces TX line high. Now, the secondary boot code must be sent to the phone within 10 ms per 16 bit word. If these time-out values are exceeded, the MCU (MAD2) starts normal code execution from flash. After this, the timing between the phone and the flash prommer is handled with dummy bites.

A 5V programming voltage is supplied inside the transceiver from the battery voltage with a switch mode regulator (5V/30mA) of the CCONT. The 5V is connected to VPP pin of the flash.

Characteristics	Min	Тур	Max	Unit
Time from boot indication to MAD2 initialization sequence			15	ms
Time from MAD2 initialization sequence to byte length informa- tion			1	ms
Time from byte length information to end of secondary boot code loading.			10 per16 bit word	ms

Figure 12: Flash Programming Sequence

COBBA GJP

COBBA GJP ASIC provides an interface between the baseband and the RF-circuitry. COBBA performs analogue to digital conversion of the receive signal. For transmit path COBBA performs digital to analogue conversion of the transmit amplifier power control ramp and the in-phase and quadrature signals. A slow speed digital to analogue converter will provide automatic frequency control (AFC).

COBBA is at any time connected to MAD asic with two interfaces, one for transferring TX and RX data between MAD and COBBA and one for transferring codec RX/TX samples.

Real time clock

Requirements for a real time clock implementation are a basic clock (hours and minutes), a calender and a timer with alarm and power on/off -function and miscellaneous calls. The RTC will contain only the time base and the alarm timer but all other functions (e.g. calendar) will be implemented with the MCU software. The RTC needs a power backup to keep the clock running when the phone battery is disconnected. The backup power is supplied from a rechargable Li-ion battery that can keep the clock running some ten minutes. If the backup has expired, the RTC clock restarts after the main battery is connected. The CCONT keeps MCU in reset until the 32kHz source is settled (1s max).

The CCONT is an ideal place for an integrated real time clock as the asic already contains the power up/down functions and a sleep control with the 32kHz sleep clock, which is running always when the phone battery is connected. This sleep clock is used for a time source to a RTC block.

RTC backup battery charging

CHAPS has a current limited voltage regulator for charging a backup battery. The regulator derives its power from VOUT so that charging can take place without the need to connect a charger. The backup battery is only used to provide power to a real time clock when VOUT is not present so it is important that power to the charging circuitry is derived from VOUT and that the charging circuitry does not present a load to the backup battery when VOUT is not present.

It should not be possible for charging current to flow from the backup battery into VOUT if VOUT happens to be lower than VBACK. Charging current will gradually diminish as the backup battery voltage reaches that of the regulation voltage.

Security

The phone flash program and IMEI code are software protected using an external security device that is connected between the phone and a PC. The security device uses the phone given IMEI number, the software version number and a 24bit hardware random serial number that is read from the COBBA and calculates a flash authority identification number that is stored into the phone (emulated) EEPROM.

Baseband EMC Strategy

The baseband EMC strategy is divided into electrical and mechanical items. As electrical guide lines, clocks and high speed signals should be routed in inner layers and away from the PCB edges. Clock signals distributed to other circuits should have series resistors incorporated to reduce rise times and reflections. Slew rate controlled buffers should be used on custom components wherever possible to reduce the EMC produced by the circuit. Separate power supplies for digital, analog and rf-blocks should be used as much as possible. Baseband and RF supply power rails should be isolated from each other by

means of inductors in the power supply rail to prevent high frequency components produced on the baseband power supply rail to spread out over the RF power supply plane. This might be required to avoid interference from digital circuits to affect the performance of RF section.

All external connectors and connection must be filtered using RC or LC networks to prevent the high frequency components from entering connection cables that then will act as antennas. The amount of this type of EMC component is in straight relation to the amount of external connections. The type of network and amount of components to be used is determined by the AC and DC impedance characteristic of that particular signal. Low impedance signals requires LC network while medium impedance level signals, input signals at moderate band width can use RC networks.

The EMC protection should also prevent external or internal signals to cause interference to baseband and in particular to audio signals. Internal interference is generated by the transmitter burst frequency and the switchmode charging. The transmitter burst frequency interference is likely to cause noise to both microphone and earphone signals. The transmitter RF interference is likely to cause more problems in the microphone circuitry than in the earphone circuitry since the earpiece is a low impedance dynamic type.

As mechanical guide lines, the baseband and RF sections should be isolated from each other using EMC shielding, which suppresses radiated interferences. The transmitter burst frequency can also generate mechanical vibrations that can be picked up by the microphone if it is not properly isolated from the chassis using rubber or some other soft material. Connection wires to internal microphone and earphone should be as short as possible to reduce the interference caused by internal signals.

ESD protection has to be implemented on each external connection that is accessible during normal operation of the phone.

Baseband Testing

The MCU software enters a local mode at startup if a dummy battery is attached and the battery temperature value is high enough. This means that the fixed resistor on the BTEMP line must correspond to a temperature higher than +85 C. In the local mode the baseband can be controlled through MBUS or FBUS connections by a PC-locals software. Baseband internal connections are tested with self tests if possible. By connecting MAD2 pin ROW5 to ground, MAD2 pins are toggled as a daisy chain, which can be used for detecting short circuits in MAD2 pins. Test pads will be placed on engine pcb for service and production trouble shooting purposes in some supply voltage and signal lines.

Alignments

Within alignment those parameters are adjusted, that cannot be set accurate enough by design, because of component tolerances.

Due to use of 5% resistor values, the channels of the CCONT A/D converters need to be aligned in the production phase.

Within battery voltage VBATT tuning the MCU software reads the A/D reading from

CCONT at 3.6V and stores this reading to EEPROM memory as a reference point. Another reference point is created by assuming that when the input voltage is zero, A/D reading is also zero. Now the slope is known and A/D readings can be calibrated. Calibration is included in VBATT A/D reading task.

Battery charging voltage VCHAR and current ICHAR are calibrated using one test setting. Test jig in production line must have a connection to battery terminals. ICHAR is adjusted to 500mA and VCHAR to 8.4V with appropriate load connected to the battery terminals.

BTEMP is calibrated with 47kohm resistor.

BSI is calibrated with 22kohm resistor.

Baseband Startup for Testing

When an unprogrammed module is powered up the first time the MCU starts from the boot rom inside the MAD2. The MBUS line is to be kept low to inform the MCU that the flash prommer is connected and the MCU should stop after the boot and wait for a download code.

When the flash programming is performed successfully the MCU switches to flash prom software. If the baseband is powered up for the first time the MCU will remain in local mode as the factory set has not been executed. To allow re-programming of working modules the MCU is at startup forced into local mode by connecting the BSI and BTEMP signals to ground using specified resistors.

RF Module

This RF module takes care of all RF functions of GSM1900 single band engine. RF circuitry is on one side of a 8 layer transceiver PCB. PCB area for the RF circuitry is about 15 cm2. RF design is based on the first dualband direct conversion RF-IC "Hagar". So there is no intermediate frequency. That means the number of components is lower than before and there shall be much less interference problems than previously.

Shielding

EMC emissions are taken care by using metallized plastic shield which screens the whole transceiver. Internal screening is realized by isolated partitions, these are the PA and the VCO blocks. The baseband circuitry is located on the same side of pcb.

Minimum height on RF board is 1.8 mm and a little space has been reserved for higher components (2.5 mm). In addition there is a possibility to put some higher (max. 2.0 mm) components in low area (recesses can be made in plastic shield). Heat generated by the circuitry will be conducted out via the PCB ground planes and metal shields.

Environmental Specifications

Normal and Extreme voltages

Lithium-Ion battery (1cell)	
Nominal Voltage	4.1 V
Lower Extreme Voltage	3.45 V (0.85 x 4.1 V = $3.49 V$, "the MS shall inhibit all RF transmissions when the power supply voltage is below the manufacturer declared shut-down voltage")
Higher Extreme Voltage	Nominal
Absolute Maximum Voltage	5.1 V
Software Cut-off Voltage	3.1 V

Temperature Conditions

RF Specifications are met within

-10...+55 deg C ambient temperature.

Storage temperature range is

-40...+70 deg C.

Humidity

Relative humidity range is 5... 95%. This module is not protected against water. Condensation or splashed water might cause malfunction momentary. Long term wetness will cause permanent damage (corrosion etc.).

Vibration

All requirements must be met in following vibration conditions:

Freq.	ASD (Acceleration Spectral Density) random vibration
10100 Hz	3 m ² /s ³ (0.0132 g ² /Hz)
100500 Hz	-3 dB/Octave

ESD Strength

Module should withstand an electrostatic discharge from 150 pF capacitor via 300 ohm resistor. Conducted discharge into antenna and battery connector is 8 kV (>10 discharges) and air contact 15 kV (>10 discharges).

Main Technical Specifications

Maximum Ratings

Parameter	Rating
Normal battery voltage, idle mode	3.6 V
Regulated supply voltage	2.8 +/- 3% V
Voltage reference	1.5 +/- 1.5% V
Operating temperature range	-10+55 deg. C
Absolute maximum voltage	5.1 V
Software cut-off voltage	3.1 V

RF Frequency Plan

DC Characteristics

Regulators

Transceiver has a multi function power management IC at baseband section, which contains among other functions also 7 pcs of 2.8 V regulators. All regulators can be controlled individually with 2.8 V logic directly or through control register. In GSM direct controls are used to get fast switching because the regulators are used to enable RF functions.

VREF_2 from CCONT IC and RXREF from COBBA IC are used as the reference voltages for HAGAR RF-IC, VREF_2 (1.5V) for bias reference and RXREF (1.2V) for RX ADC's reference.

Control Signals

VXCO PWR	SYNTH PWR	RX PWR	TX PWR	ТХР	Typ.curre nt cons.	Notes
L	L	L	L	L	<10 uA	Leakage current (PA)
Н	Н	L	L	L	28 mA	Synthesizer
Н	Н	Н	L	L	81 mA	RX active
Н	Н	L	Н	L	138 mA	TX active except PA
Н	Н	L	Н	Н	1700 mA	TX active, full power

All regulators are connected to HAGAR and directed with SYNTPWR. Different modes are switched on via serial bus.

All control signals are coming from MAD2 (2.8 V logic signals).

List of the needed supply voltages:

Volt. source Name of the supply Load

V5V VR5 VR1 VR2	VCP VTX VXO VRX	PLL charge pump, VCO TX modulator VCTCXO HAGAR IC (LNA2+mixer+DTOS)
VR4 VR3 VR6 VREF_2 RXREF (COBBA TXVGSM (Haga TXVDCS (Haga TXVDCS (Haga Vbatt	VSYN_2 VSYN_1 A) Ar) r) VBATT	HAGAR IC (div+LO-buff+prescaler) LNA + HAGAR (Vdd_bb) COBBA analog parts ref. voltage for HAGAR ref. voltage for HAGAR Ant. sw. GSM Ant. sw. DCS Power detector RF regulators in CCONT, PA

Power Distribution Diagram

Figure 14: Power Distribution Diagram

RF Characteristics

GSM1900 (PCS1900)

ltem	Values
Receive Frequency Range	1930.2 1989.8 MHz
Transmit Frequency Range	1850.2 1909.8 MHz
Duplex Spacing	80 MHz
Channel Spacing	200 kHz
Number of Channels	299
Power Class	1
Number of Power Levels	16

Transmitter Characteristics

ltem	Values
Туре	Direct conversion, single band, non-linear, FDMA/TDMA
LO Frequency Range	3700.4 3819.6 MHz
Output Power	1 W peak
Gain Control Range	min. 30 dB
Maximum Phase Error (RMS/peak)	5 deg / 20 deg

Output Power Requirements

Parameter	Min.	Тур.	Max.	Unit / Notes
Max. Output Power		29.0		dBm
Max. Output Power Tolerance (Power Level 0)			+/- 2.0 +/- 2.5	dB, normal condition dB, extreme condition
Output Power Tolerance / Power Levels 18			+/- 3.0 +/- 4.0	dB, normal condition dB, extreme condition
Output Power Tolerance / Power Levels 913			+/- 4.0 +/- 5.0	dB, normal condition dB, extreme condition
Output Power Tolerance / Power Levels 14 and 15			+/- 5.0 +/- 6.0	dB, normal cond. dB, extreme cond.

Output RF Spectrum due to modulation

Power level	100 kHz	200 kHz	250 kHz	400 kHz	600 to 1800 kHz	1800 to 6000 kHz	> 6000 kHz	Unit
	Measurement Bandwidth 30 kHz					Measureme	nt Bandwidth	n 100 kHz
PL 0	+0.5	-30	-33	-60	-60	-65	-73	dBc
PL 1	+0.5	-30	-33	-60	-60	-63	-71	dBc
PL 2	+0.5	-30	-33	-60	-60	-61	-69	dBc
PL 3 and lower	+0.5	-30	-33	-60	-60	-59	-67	dBc

Spectrum due to switching transients

Power Level	400 kHz	600 kHz	1200 kHz	1800 kHz	Unit
all	-23	-26	-32	-36	dBm

Spurious Emissions (when allocated a channel)

Frequency Range	Min.	Тур.	Max.	Unit / Notes
9 kHz 1 GHz			-36	dBm
1 12.75 GHz			-30	dBm *
* 1930 1990 MHz			-71	dBm

A maximum of five exceptions with a level up to -36 dBm are permitted in the band 1930...1990 MHz for each ARFCN used in the measurements.

Spurious Emissions (idle mode)

Frequency Range	Min.	Тур.	Max.	Unit / Notes
9 kHz 1 GHz			-57	dBm
1 12.75 GHz			-47	dBm *
* 1850 1910 MHz			-53	dBm

Frequency Error and Phase Accuracy

Propagation condition	Min.	Тур.	Max.	Unit/Notes
Static ch.			+/- 0.1	ppm
TU1.5			+/- 320	Hz
TU50			+/- 260	Hz
HT100			+/- 350	Hz
RA130			+/- 400	Hz
RMS Phase Error			5.0	deg
Peak Deviation			20.0	deg

Receiver Characteristics

Item	Values
Туре	Direct conversion, single band, linear, FDMA/TDMA
LO Frequencies	3860.4 3979.6 MHz
Typical 3 dB Bandwidth	+/- 91 kHz
Sensitivity	min. – 102 dBm, S/N >8 dB
Typical Total Receiver Voltage Gain (from antenna to RX ADC)	86 dB
Receiver Output Level (RF Level -95 dBm)	230 mVpp, single ended I/Q-signals to RX ADCs
Typical AGC Dynamic Range	83 dB
Accurate AGC Control Range	50 dB
Typical AGC Step in LNA	33 dB
Usable Input Dynamic Range	-10210 dBm
RSSI Dynamic Range	-11048 dBm
Compensated Gain Variation in Receive Band	+/- 1.0 dB

Blocking Requirements

Frequency Band	Minimum	Typical / Nominal	Maximum	Unit / Notes
600 kHz <= [f – fo] < 800 kHz	-43			dBm / in-band
800 kHz <= [f – fo] < 1.6 MHz	-43			dBm / in-band
1.6 MHz <= [f - fo] < 3 MHz	-33			dBm / in-band
3 MHz <= [f - fo]	-26			dBm / in-band
100 kHz – < 1830 MHz	0			dBm / out-of-band
1830 MHz – < 1910 MHz	-12			dBm / out-of-band
> 2010 MHz – 2070 MHz	-12			dBm / out-of-band
> 2070 MHz – 12.75 GHz	0			dBm / out-of-band

In-band (1910...2010 MHz); maximum of twelve occurrences are permitted.

Out-of-band; maximum of 24 occurrences are permitted.

AM Suppression Requirements

Frequency Band	Minimum	Typical / Nominal	Maximum	Unit / Notes
[f - fo] >= 6 MHz *	-29			dBm

* Interferer is TDMA signal, pseudo random GMSK modulated at integer multiple of 200 kHz distance from wanted signal.

Interferer is at least 2 channels separated from any identified spurious response.

Interferer is active one time slot and delayed in time between 61 and 86 bit periods relative to the wanted signal bursts. It's also synchronized.

Sensitivity, Inter modulation, Spurious Rejection and Emissions

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Reference Sensitivity Level			-102	dBm
Inter modulation Rejection	50			dB, fo=2*f1-f2,[f2- f1]=800 kHz
Spurious Response Rejection	56 *			dB
Spurious Emissions			-57	dBm, 9 kHz - 1 GHz
			-47	dBm, 1 GHz - 12.75 GHz

* 12 occurrences allowed in band 1910-2010 MHz/test ch. Rest of the occurrences have to meet blocking requirements. Max. 24 spurious responses are allowed in combined band 100 kHz-1830 MHz and 2010 MHz-12.75 GHz, other responses have to be in the limits of blocking specification.

Reference Interference level

Parameter	Minimum	Typical / Nominal	Maximum	Unit / Notes
Cochannel Interference Ratio	9			dB
Adjacent (200 kHz) Interference Ratio	-9			dB
Adjacent (400 kHz) Interference Ratio	-41			dB
Adjacent (600 kHz) Interference Ratio	-49			dB

Interferer is modulated with random GMSK. Interferer and wanted signals are faded.

RF Block Diagram

Architecture contains RF-IC ("Hagar"), PA module, VCO module, VCTCXO module and discrete LNA stage.

Figure 15: RF Block Diagram

Frequency synthesizer

VCO frequency is locked by PLL into a stable frequency source, which is a VCTCXO module (Voltage Controlled Temperature Compensated Crystal Oscillator). VCTCXO is running at 26 MHz. Temperature effect is controlled by AFC (Automatic Frequency Control) voltage. VCTCXO is locked to a frequency of base station. AFC is generated by baseband with a 11 bit conventional DAC in COBBA asic.

PLL is located in HAGAR RF-IC and is controlled via serial bus by COBBA (in baseband). There is a 64/65 (P/P+1) pre-scaler, an N- and A-divider, a reference divider, a phase detector and a charge pump for an external loop filter. SHF (Super High Frequency) local signal, generated by a VCO module (Voltage Controlled Oscillator), is fed to the prescaler. The pre-scaler is a dual modulus divider. Output of the pre-scaler is fed to the Nand A-divider which generates an input to the phase detector. The phase detector compares this signal to a reference signal (400kHz) which is divided by the reference divider from VCTCXO output. Output of the phase detector is connected to the charge pump which charges or discharges an integrator capacitor in the loop filter depending on a phase of measured frequency compared to the reference frequency.

The loop filter filters out pulses and generates a DC control voltage to the VCO. The loop filter defines a step response of PLL (Phase Locked Loop), i.e. Settling Time, and effects to a stability of the loop – that's why the integrator capacitor has got a resistor for phase compensation. Other filter components are for sideband rejection. Dividers are controlled via serial bus. SDATA is for data, SCLK is a serial clock for the bus and SENA1 is a latch enable which stores new data into the dividers.

LO signal is generated by a SHF VCO module. The VCO has double frequency in GSM1900 compared to actual RF channel frequency. The LO signal is divided by two in HAGAR.

Figure 16: Phase Locked Loop

Receiver

Receiver is a direct conversion linear receiver. Received RF signal from antenna is fed via Antenna Switch to the 1st RX SAW filter and a discrete LNA (Low Noise Amplifier). Gain selection control of the LNA comes from HAGAR IC. Gain step is activated when RF level in antenna is about -40 dBm.

After the LNA amplified signal (with low noise level) is fed to a bandpass filter (the 2nd RX SAW filter). The RX filters define how good are the blocking characteristics against spurious signals outside the receive band and the protection against spurious responses.

These bandpass filtered signals are then balanced with baluns. Differential RX signal is amplified and mixed directly down to a BB frequency in HAGAR. Local Oscillator signal is generated by an external VCO. The VCO signal is divided by 2. PLL and dividers are in HAGAR IC.

From the mixer output to an ADC input RX signal is divided to I- and Q-signals. Accurate phasing is generated by LO dividers. After the mixer DTOS amplifiers convert the differential signals to single ended. DTOS has two gain stages. The first one has constant gain of 12dB and 85kHz cut off frequency. The gain of second stage is controlled by control signal g10. If g10 is high (1) the gain is 6dB and if g10 is low (0) the gain is -4dB.

The active channel filters in HAGAR IC provides selectivity for channels (-3dB @ +/-100 kHz typ.). Integrated baseband filter is an active RC filter with two off-chip capacitors. Long RC time constant needed in the channel selection filter of direct conversion receiver is produced by large off-chip capacitors because the impedance levels could not be increased due to noise specifications. The baseband filter consists of two stages, DTOS and BIQUAD. DTOS is a differential to single-ended converter having 8dB or 18dB gain. BIQUAD is a modified Sallen-Key Biquad.

Integrated resistors and capacitors are tunable. These are controlled by a digital control word. The correct control words which compensate process variation of the integrated resistors and capacitors and tolerance of the off-chip capacitors are found by a calibration circuit.

The next stage in receiver chain is an AGC amplifier – also integrated in HAGAR. The AGC has a digital gain control via serial bus from COBBA IC. The AGC stage provides gain control range of 40 dB (10 dB steps) for the receiver and also necessary DC compensation. The 10 dB AGC step is implemented by DTOS stages.

The DC compensation is made during DCN1 and DCN2 operations (controlled via serial bus). DCN1 is carried out by charging large external capacitors in the AGC stages to a voltage which cause a zero dc-offset. DCN2 sets the signal offset to a constant value (RXREF 1.2 V). The RXREF signal (from COBBA GJP) is used as a zero level to RX ADCs.

Single ended filtered I/Q-signal is finally fed to the ADCs of COBBA. The input level for ADC is 1.4 Vpp max.

Transmitter

Transmitter chain consists of a final frequency IQ-modulator, a single band power amplifier and a power control loop.

I- and Q-signals are generated by baseband in COBBA asic. After post filtering (RC network) the signals are modulated by IQ-modulator in HAGAR IC. The LO signal for modulator is generated by a VCO and is divided by 2. After modulator the TX signal is amplified and buffered. HAGAR TX output level is +3 dBm minimum.

Next the TX signal is converted to single ended by discrete baluns. The final amplification is realized by the power amplifier (PA). It has a 50 ohm input and output. Right output power is controlled by a power control loop. The PA is able to generate over 1 W output power (0 dBm input level). The gain control range is over 35 dB to get desired power levels and power ramping up/down.

Harmonics generated by the nonlinear PA are filtered out by the diplexer inside the antenna switch module.

Power control circuitry consists of a discrete power detector and an error amplifier (in HAGAR). There is a directional coupler between the PA output and the antenna switch. The directional coupler takes a sample from the TX power with a certain ratio. The sampled signal is rectified by a schottky-diode to produce a DC signal (after filtering). The detected voltage is compared by the error amplifier in HAGAR to TXC voltage which is generated by a DA converter in COBBA. The TXC has got a raised cosine form (cos⁴ function) which reduces switching transients when pulsing the TX power up and down. Because dynamic range of the detector is not wide enough to control the TX power (actually the RF output voltage) over the whole range there is a control named TXP to work under the detected levels. Burst is enabled and set to rise with TXP until the output level is high enough, i.e. when the feedback loop works. The loop controls the TX output to rise to a wanted output level. The burst has got a template of TXC ramp. Because the feedback loops can be unstable the loop is compensated by a dominating pole. The pole

decreases gain at high frequencies to insure phase margins high enough.

Figure 17: Power Control Loop Diagram

AGC strategy

AGC amplifier is used to maintain output level of the receiver in certain range. AGC has to be set before each received burst. This is called pre-monitoring. Receiver is switched on roughly 280 μ s before the burst begins. DSP measures received signal level and adjusts AGC amplifier via serial bus from COBBA GJP.

There is a 50 dB accurate gain control (10 dB steps) and one larger step (\sim 30 dB) in LNA. LNA AGC gain step size depends on a channel with some amount.

RSSI must be measured accurately on range of -48...-110 dBm. Above -48 dBm level MS reports to base station the same reading.

Production calibration is done by two RF levels. The LNA gain step is not calibrated.

AFC function

AFC is used to lock the transceivers clock to the frequency of base station. AFC voltage is generated by COBBA asic with a 11 bit DA converter. In the AFC control line a RC filter is used to reduce noise coming from the converter. Settling time requirement for the RC network comes from signalling, i.e. how often PSW (Pure Sine Wave) slots occur. The PSW is repeated in every 10th frame. It means there is a PSW every 46 ms. The AFC tracks base station frequency continuously. This way the transceiver gets a stable frequency. Temperature does not affect to VCTCXO frequency very fast.

Settling time requirement comes also from the start-up time allowed. When the trans-

ceiver is in sleep mode and "wakes up" to a receive mode there is only ca. 5 ms for the AFC voltage to settle. When the first burst comes in the system clock has to be settled with +/- 0.1 ppm frequency accuracy. The VCTCXO module requires also 5 ms to settle to the final frequency. Amplitude rises to full swing in 1... 2 ms. Because the frequency settling time is higher this oscillator must be powered up early enough.

DC Compensation

DC compensation is done during DCN1 and DCN2 operations (controlled via serial bus). DCN1 is carried out by charging large external capacitors in AGC stages to a voltage which causes a zero dc offset. DCN2 sets the signal offset to a constant value (RXREF 1.2 V).
ITEM	CODE	DESCRIPTION	VALUE	ТҮРЕ
R100	1430826	Chip resistor	680 k	5 % 0.063 W 0402
R101	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R102	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R103	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R104	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R105	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R109	1620017	Res network 0w06 2x100r j	0404	0404
R110	1430826	Chip resistor	680 k	5 % 0.063 W 0402
R111	1430820	Chip resistor	470 k	5 % 0.063 W 0402
R118	1430778	Chip resistor	10 k	5 % 0.063 W 0402
R120	1620025	Res network 0w06 2x100k j	0404	0404
R122	1620019	Res network 0w06 2x10k j	0404	0404
R124	1620017	Res network 0w06 2x100r j	0404	0404
R128	1430718	Chip resistor	47	5 % 0.063 W 0402
R131	1419003	Chip resistor	0.22	5 % 1210
R154	1430325	Chip resistor	2.2 M	5 % 0.063 W 0603
R201	1430812	Chip resistor	220 k	5 % 0.063 W 0402
R202	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R203	1430770	Chip resistor	4.7 k	5 % 0.063 W 0402
R205	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R206	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R207	1430726	Chip resistor	100	5 % 0.063 W 0402
R208	1430726	Chip resistor	100	5 % 0.063 W 0402
R209	1825021	Chip varistor vwm14v vc46v	0402	0402
R210	1825021	Chip varistor vwm14v vc46v	0402	0402
R211	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R215	1620023	Res network 0w06 2x47k j	0404	0404
R252	1430754	Chip resistor	1.0 k	5 % 0.063 W 0402
R254	1430760	Chip resistor	1.8 k	5 % 0.063 W 0402
R256	1430718	Chip resistor	47	5 % 0.063 W 0402
R257	1430718	Chip resistor	47	5 % 0.063 W 0402
R258	1430746	Chip resistor	560	5 % 0.063 W 0402
R260	1430744	Chip resistor	470	5 % 0.063 W 0402
R261	1430726	Chip resistor	100	5 % 0.063 W 0402
R262	1825021	Chip varistor vwm14v vc46v	0402	0402
R263	1825021	Chip varistor vwm14v vc46v	0402	0402
R266	1430796	Chip resistor	47 k	5 % 0.063 W 0402
R267	1430762	Chip resistor	2.2 k	5 % 0.063 W 0402
R268	1430744	Chip resistor	470	5 % 0.063 W 0402
R269	1620025	Res network 0w06 2x100k j	0404	0404
R270	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R272	1430804	Chip resistor	100 k	5 % 0.063 W 0402
R273	1430792	Chip resistor	33 k	5 % 0.063 W 0402
R274	1430812	Chip resistor	220 k	5 % 0.063 W 0402
R275	1620105	Res network 0w06 2x2k2 j	0404	0404
R277	1620025	Res network 0w06 2x100k j	0404	0404
R310	1430778	Chip resistor	10 k	5 % 0.063 W 0402

Parts List of RB9 (EDMS Issue 5.3)

Code: 0201512

R311 143	30778 (Chip resistor	10 k	5 % 0.063 W 0402
R350 143	30155 (Chip resistor	15	5 % 0.1 W 0603
R351 143	30155 (Chip resistor	15	5 % 0.1 W 0603
R352 143	30155 (Chip resistor	15	5 % 0.1 W 0603
R353 143	30155 (Chip resistor	15	5 % 0.1 W 0603
R354 182	25021 (Chip varistor vwm14v vc46v	0402	0402
R371 143	30137 (Chip resistor	1.0 k	1 % 0.063 W 0402
R372 143	30137 (Chip resistor	1.0 k	1 % 0.063 W 0402
R373 143	30137 (Chip resistor	1.0 k	1 % 0.063 W 0402
R374 143	30137 (Chip resistor	1.0 k	1 % 0.063 W 0402
R403 143	30702 (Chip resistor	12	5 % 0.063 W 0402
R404 143	30702 (Chip resistor	12	5 % 0.063 W 0402
R510 162	20003 F	Res network 0w03 4x100r j	0804	0804
R530 162	20019 F	Res network 0w06 2x10k j	0404	0404
R532 143	30832 (Chip resistor	2.7 k	5 % 0.063 W 0402
R533 143	30778 (Chip resistor	10 k	5 % 0.063 W 0402
R541 162	20033 F	Res network 0w06 2x5k6 j	0404	0404
R546 162	20033 F	Res network 0w06 2x5k6 i	0404	0404
R563 143	30187 (Chip resistor	47 k	1 % 0.063 W 0402
R564 143	30746 (Chip resistor	560	5 % 0.063 W 0402
R565 143	30770 (Chip resistor	4.7 k	5 % 0.063 W 0402
R614 143	30728 (Chip resistor	120	5 % 0.063 W 0402
R640 143	30738 (Chip resistor	270	5 % 0.063 W 0402
R643 143	30832 (Chip resistor	2.7 k	5 % 0.063 W 0402
R645 143	30832 (Chip resistor	2.7 k	5 % 0.063 W 0402
R672 14.	30728 (Chip resistor	120	5 % 0.063 W 0402
R732 143	30746 (Chip resistor	560	5 % 0.063 W 0402
R737 143	30744 (Chip resistor	470	5 % 0.063 W 0402
R738 143	30706 (Chip resistor	15	5 % 0.063 W 0402
R740 14.	30730 (Chip resistor	150	5 % 0.063 W 0402
R741 143	30730 (Chip resistor	150	5 % 0.063 W 0402
R743 143	30690 (Chip jumper		0402
R744 143	30710 (Chip resistor	22	5 % 0.063 W 0402
R754 143	30720 (Chip resistor	56	5 % 0.063 W 0402
R763 143	30774 (Chip resistor	6.8 k	5 % 0.063 W 0402
R764 14.	30776 (Chip resistor	8.2 k	5 % 0.063 W 0402
R790 143	30788 (Chip resistor	22 k	5 % 0.063 W 0402
R791 143	30770 (Chip resistor	4.7 k	5 % 0.063 W 0402
R792 143	30780 (Chip resistor	12 k	5 % 0.063 W 0402
R800 14.	30778 (Chip resistor	10 k	5 % 0.063 W 0402
R801 143	30774 (Chip resistor	6.8 k	5 % 0.063 W 0402
R802 14.	30764 (Chip resistor	3.3 k	5 % 0.063 W 0402
R805 162	20505 F	Res network 0w04	2DB ATT	0404
R806 143	30738 (Chip resistor	270	5 % 0.063 W 0402
R807 143	30738 (Chip resistor	270	5 % 0.063 W 0402
R829 143	30752 (Chip resistor	820	5 % 0.063 W 0402
R830 143	30762 (Chip resistor	2.2 k	5 % 0.063 W 0402
R831 14:	30718 (Chip resistor	47	5 % 0.063 W 0402
R832 141	30788 (Chip resistor	22 k	5 % 0.063 W 0402
R833 143	30762 (Chip resistor	2.2 k	5 % 0.063 W 0402
R834 143	30812 (Chip resistor	220 k	5 % 0.063 W 0402
				-

NOKIA				NSB-7
PAMS Tech	nical Docum	entation		System Module
				-
C102	2320538	Ceramic cap.	12 p	5 % 50 V 0402
C103	2312411	Ceramic cap.	1.0 ['] u	20 % 25 V 1206
C104	2320783	Ceramic cap.	33 n	10 % 10 V 0402
C105	2611719	Tantalum cap.	10 u	20 % 10 V 2.0x1.35x1.35
C106	2320481	Ceramic cap	5R 1 u	10 % 0603
C107	2320481	Ceramic cap.	5R 1 u	10 % 0603
C108	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C113	2320508	Ceramic cap.	1.0 р	0.25 % 50 V 0402
C120	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C121	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C127	2320805	Ceramic cap.	100 n	10 % 10 V 0402
C128	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C129	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C131	2611719	Tantalum cap.	10 u	20 % 10 V 2.0x1.35x1.35
C132	2611741	Tantalum cap.	4.7 u	20 % 10 V 2.0x1.3x1.2
C133	2320481	Ceramic cap.	5R 1 u	10 % 0603
C140	2320481	Ceramic cap.	5R 1 u	10 % 0603
C142	2611719	Tantalum cap.	10 u	20 % 10 V 2.0x1.35x1.35
C150	2320481	Ceramic cap.	5R 1 u	10 % 0603
C151	2320481	Ceramic cap.	5R 1 u	10 % 0603
C152	2320481	Ceramic cap.	5R 1 u	10 % 0603
C153	2320481	Ceramic cap.	5R 1 u	10 % 0603
C154	2320481	Ceramic cap.	5R 1 u	10 % 0603
C163	2320602	Ceramic cap.	4.7 p	0.25 % 50 V 0402
C165	2611737	Tantalum cap.	68 u	20 % 16 V 7.3x4.3x2.0
C169	2320602	Ceramic cap.	4.7 p	0.25 % 50 V 0402
C200	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C201	2320783	Ceramic cap.	33 n	10 % 10 V 0402
C203	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C204	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C205	2610203	lantalum cap.	2.2 u	20 % 10 V 2.0x1.3x1.2
C206	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C207	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C208	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C209	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C211	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C212	2320779	Ceramic cap.	100 n	10 % 16 V 0603
C213	2320744	Ceramic cap.	1.0 n	
C221	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C231	2320778	Ceramic cap.	10 n 10 n	10 % 16 V 0402
C241	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C247	2320778	Ceramic cap.		10 % 16 V 0402
C248	2320481	Ceramic cap.	5K I U 10 m	
C249 C251	2320778	Ceramic cap.	10 n	
C251	2320778	Ceramic cap.		
C253 C257	2320/03 2220702	Ceramic cap.	33 [] 22 m	
C23/ C259	2320/83 2220702	Ceramic cap.	33 II 22 m	
C250	2320/03 2220702	Ceramic cap.	33 [] 22 m	
C259	2320783 2220701	Ceramic cap.	33 N ED 1 ··	
C200 C262	232040 2220702	Ceramic cap.	טו חכ מיכי	
C202 C262	2320703 2220702	Ceramia con	ו נכ י ה	
C203	2320/03	Ceranne Cap.	33 11	10 %0 10 V 0402

C268	2320481	Ceramic cap.	5R 1 u	10 % 0603
C269	2320544	Ceramic cap.	22 p	5 % 50 V 0402
C270	2610207	Tantalum cap.	10 u	20 % 2.0x1.3x1.2
C276	2320481	Ceramic cap.	5R 1 u	10 % 0603
C291	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C292	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C293	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C296	2610207	Tantalum cap.	10 u	20 % 2.0x1.3x1.2
C297	2610207	Tantalum cap.	10 u	20 % 2.0x1.3x1.2
C299	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C303	2320744	Ceramic cap.	1.0 ['] n	10 % 50 V 0402
C304	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C306	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C307	2320598	Ceramic cap.	3.9 n	5 % 50 V 0402
C310	2312401	Ceramic cap.	1.0 u	10 % 10 V 0805
C330	2320481	Ceramic cap.	5R 1 u	10 % 0603
C331	2320779	Ceramic cap.	100 n	10 % 16 V 0603
C342	2320560	Ceramic cap	100 p	5 % 50 V 0402
C371	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C372	2320564	Ceramic cap	150 p	5 % 50 V 0402
C373	2320564	Ceramic cap	150 p	5 % 50 V 0402
C400	2320481	Ceramic cap	5R 1 u	10 % 0603
C401	2320805	Ceramic cap	100 n	10 % 10 V 0402
C405	2320544	Ceramic cap	22 n	5 % 50 V 0402
C406	2320805	Ceramic cap	100 n	10 % 10 V 0402
C510	2320135	Ceramic cap	150 n	10 % 10 V 0603
C511	2320135	Ceramic cap	150 n	10 % 10 V 0603
C512	2320135	Ceramic cap.	150 n	10 % 10 V 0603
C513	2320135	Ceramic cap.	150 n	10 % 10 V 0603
C520	2320485	Ceramic cap.	470 p	5 % 50 V 0603
C521	2320485	Ceramic cap.	470 p	5 % 50 V 0603
C522	2320485	Ceramic cap.	470 p	5 % 50 V 0603
C523	2320485	Ceramic cap.	470 p	5 % 50 V 0603
C530	2320631	Ceramic cap.	180 p	5 % 25 V 0402
C531	2320631	Ceramic cap.	180 p	5 % 25 V 0402
C532	2320781	Ceramic cap.	47 n	20 % 16 V 0603
C533	2320781	Ceramic cap.	47 n	20 % 16 V 0603
C534	2320783	Ceramic cap.	33 n	10 % 10 V 0402
C535	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C540	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C541	2320556	Ceramic cap.	68 p	5 % 50 V 0402
C550	2320598	Ceramic cap.	3.9 ['] n	5 % 50 V 0402
C557	2320554	Ceramic cap.	56 p	5 % 50 V 0402
C560	2320548	Ceramic cap.	33 p	5 % 50 V 0402
C561	2320778	Ceramic cap.	10 n	10 % 16 V 0402
C562	2320546	Ceramic cap.	27 p	5 % 50 V 0402
C564	2320783	Ceramic cap.	33 n	10 % 10 V 0402
C612	2320564	Ceramic cap.	150 p	5 % 50 V 0402
C621	2320805	Ceramic cap	100 n	10 % 10 V 0402
C630	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C631	2320534	Ceramic cap.	8.2 p	0.25 % 50 V 0402
C640	2320520	Ceramic cap.	2.2 p	0.25 % 50 V 0402

NO	KIA			NSB-7
PAMS	Technical Docume	ntation		System Module
				•
C642	2320744	Ceramic cap.	1.0 n	10 % 50 V 0402
C643	2320540	Ceramic cap.	15 p	5 % 50 V 0402
C644	2320516	Ceramic cap.	1.5 p	0.25 % 50 V 0402
C645	2320540	Ceramic cap	15 p	5 % 50 V 0402
C711	2320540	Ceramic cap	15 p	5 % 50 V 0402
C712	2320744	Ceramic cap	10 p	10 % 50 V 0402
C714	2320711	Ceramic cap	100 n	10 % 16 V 0603
C717	2320778	Ceramic cap	100 m	10 % 16 V 0402
C718	2320602	Ceramic cap	47 n	0 25 % 50 V 0402
C721	2320002	Ceramic cap	10 p	5 % 50 V 0402
C723	2320530	Ceramic cap	33 n	5 % 50 V 0402
C723	2320540	Ceramic cap	33 p	5 % 50 V 0402
C733	2320536	Ceramic cap	10 n	5 % 50 V 0402
C734	2320536	Ceramic cap	10 p	5 % 50 V 0402
C737	2320550	Ceramic cap	10 p	0 25 % 50 V 0402
C743	2320500	Ceramic cap.	1.0 p 15 n	5.0% 50 V 0402
C743	2320340	Ceramic cap	13 p 1 7 n	
C752	2320002	Ceramic cap.	4.7 μ 100 n	5.0% 50 V 0402
C750	2320300	Ceramic cap.	100 p	
C761	2320002	Ceramic cap.	4.7 μ 10 n	5.0% 50 V 0402
C765	2320540	Ceramic cap.	10 p 15 p	5 % 50 V 0402
C703 C772	2520540	Tantalum can	13 p 17 u	3% 30% 0402
C722	2011741	Ceramic cap	4.7 u 2 2 n	
C702 C702	2320320	Ceramic cap.	2.2 μ 1 Ο μ	
C705 C705	2312401	Ceramic cap.	1.0 u 100 n	
C700	2320003	Ceramic cap.	100 li 1 Q n	
C790	2320510	Ceramic cap.	1.0 p 100 n	5.0% 50 V 0402
C792 C703	2320500	Ceramic cap.	100 p	5 % 50 V 0402
C704	2320340	Ceramic cap.	15 p 2 2 n	5 % 50 V 0402
C700	2312213	Ceramic cap.	2.2 11 Q 2 n	
	2320554	Ceramic cap.	0.2 p 150 n	5.0% 50 V 0402
	2320304	Ceramic cap.	130 p 1 7 n	5 % 30 V 0402
C002	2312221	Ceramic cap.	150 n	5 % 50 V 0402
C003	2320304	Ceramic cap.	130 p	
	2520520	Tantalum can	2.2 p	$0.23 \% 30 \ 0.0402$
C805	2320508	Ceramic can	2.2 u 1 0 n	0 25 % 50 V 0402
C000	2320500	Ceramic cap	1.0 p	5 % 50 V 0402
C820	2320560	Ceramic cap	100 p	5 % 50 V 0402
C030	2320300	Ceramic cap	22 II	
C031	2310733	Ceramic cap.	2.2 u 10 n	10 % 16 V 0803
C032	2320770	Ceramic cap	10 n	10 % 50 V 0402
C834	2320744	Ceramic cap	1.0 n	10 % 50 V 0402
C034 C835	2320744	Ceramic cap	1.0 m 15 n	5 % 50 V 0402
C838	2320540	Ceramic cap	72 n	5 % 50 V 0402
C860	2320544	Ceramic cap	22 p	5 % 50 V 0402
1103	2020040	Ferrite head 0.015r /2r/100m	0805	0805
103	3203703	Ferrite head 0.015r 42r/100m	0000	0805
1200	3203703	Ferrite head $0.5r 120r/100m$	0402	0402
1200	3203703	Ferrite head $0.5r + 20r/100m$	0402	0402
1271	3203703 3203703	Ferrite head $0.5r + 20r/100m$	0402	0402
1303	3203703	Ferrite head $0.5r + 20r/100m$	0402	0402
L304	3203709	Ferrite bead 0.5r 120r/100m	0402	0402

L505	3646053	Chip coil	4 n		Q=28/800M 0402
L553	4551019	Dir.coup. 1880+-30mhz 1			4DB 2X1.22x1.25
L600	3646055	Chip coil	8 n	5 % Q=	=28/800 MHz 0402
L601	3646085	Chip coil	6 n	10 % Q	=29/800 MHz 0402
L630	3646055	Chip coil	8 n	5 % Q=	=28/800 MHz 0402
L/39	3646087	Chip coil	1 n		Q=31/800M 0402
L751	3203705	Ferrite bead 0.015r 42r/100m	0805		0805
L752	3640043	Chip coil	4 n	10 % Q	l=50/1GHZ 0805
L758	3646027	Chip coil	33 n	5 % Q=	₌7/100 MHz 0402
L800	3648808	Chip coil		10 % Q	1=50 1206
B100	4510219	Crystal	32.768	k	+-30PPM 9PF
B301	5140157	Buzzer 85db 3000hz 3.0v 8.5x	(8.5x		8.5x8.5x3
G800	4350237	Vco 3700-3980mhz 2.7v 20m	a pcs		
G830	4510261	VCTCXO	26 M		+-5PPM2.7VGSM
F101	5119019	SM, fuse f 1.5a 32v			0603
Z600	4511167	Saw filter			1960+-30 M
Z620	4511167	Saw filter			1960+-30 M
Z670	4550203	Ant.switch 1850-1990mhz 6	.7x5x2		6.7x5x2
H400	9510608	Rf-can assembly dmc02694 h	nda56		
T630	3640431	Transf balun 1920mhz+/-70m	hz 0805		0805
T740	3640431	Transf balun 1920mhz+/-70m	hz 0805		0805
T800	3640423	Transf balun 3.7ghz+/-300mh	z 0805		0805
V100	1825023	Chip varistor vwm9v vc20v	0805		0805
V101	4210052	Transistor	DTC114	1EE	npn RB V EM3
V104	4113651	Trans. supr.	QUAD		6 V SOT23-5
V116	4110067	Schottky diode	MBR05	20L	20 V 0.5 A SOD123
V250	4210119	Transistor	BC8490	CW npn	30 V 0.1 A SOT323
V251	4210119	Transistor	BC8490	CW npn	30 V 0.1 A SOT323
V252	4210052	Transistor	DTC114	1EE	npn RB V EM3
V254	4110089	Diode x 2	BAV70	W 70	V .5 A 4 ns SOT323
V320	4860005	Led Green			0603
V321	4860005	Led Green			0603
V322	4860005	Led Green			0603
V323	4860005	Led Green			0603
V324	4860005	Led Green			0603
V325	4860005	Led Green			0603
V331	4864389	Led			0603
V332	4864389	Led			0603
V333	4864389	Led			0603
V334	4864389	Led			0603
V335	4864389	Led			0603
V336	4864389	Led			0603
V343	4110089	Diode x 2	BAV70	W 70	V .5 A 4 ns SOT323
V360	4110089	Diode x 2	BAV70	W 70	V .5 A 4 ns SOT323
V760	4110078	Schdix2 bas70-05w 70v 70ma	a sot323		SOT323
V800	4210119	Transistor	BC8490	CW npn	30 V 0.1 A SOT323
V903	4210185	Transistor			SOT343
V905	4210119	Transistor	BC8490	CW npn	30 V 0.1 A SOT323
D200	4370677	Mad2wd1 v18 rom5 f7415410	g ubga14	44 '	UBGA144
D210	4340747	Combomemory 16m flash+2m	sram c	sp	CSP
N100	4370467	Ccont2i wfd163kg64t/8 lfbaa	8x8	•	
N101	4370621	Chaps v2.0 u423v20g36t lbga	a6x6		

NOKI PAMS Te	NSB-7 System Module		
N220	4340413	IC, regulator TK11230BMC	3.0 V SOT23L
N250	4370643	Cobba_gjp v4.1 v257bg64t/8 bga64	BGA64
N310	4370433	Uiswitch sttm23av20t tssop20	TSSOP20
N400	4860081	lrda qsdl-m134#021 115.2kbps 2v7	2V7
N401	4340335	IC, regulator TK11228AM	SSO6
N505	4370667	Hagar 3 sttza8hg80t lfbga80	LFBGA80
N600	4340719	IC, regulator TK11247BMC	4.7 V SOT23L
N702	4350241	IC, pow.amp.	
S330	5209001	SM, sw tact spst 12v 50ma side k	KEY
M300	9854352	PCB UX7V 4.5X4.5X1.6 D 140/PA	
	9854432	PCB RB9 94.7X40.0X1.0 M8 4/PA	

This Page Intentionally Blank

Programmes After Market Services NSB-7 Series Transceivers

UI Module

Table of Contents

	Page No
UI Module	1
UIF Module	4
Introduction	4
BB Interface	4
LCD Module Interface	6
Bottom Connector Signals	7
Functional Description	8
Audio Control	
Display Circuit	12
Keyboard	13
Power Key	13
Backlighting	
Buzzer	
Speaker	
Microphone	
Vibra Alerting Device	
IR Module	19

List of Figures

		Page No
Fig 1	User Interface	
Fig 2	View through LCD Cell	6
Fig 3	Audio Control	8
Fig 4	External Audio Connections	9
Fig 5	Display Circuit	12
Fig 6	Keyboard	13
Fig 7	Backlighting	14
Fig 8	Buzzer	15
Fig 9	Speaker	16
Fig 10	Microphone	17
Fig 11	Vibra Alerting Device	18
Fig 12	IR Transmission	19
Fig 13	IR Module	20

UIF Module

Introduction

UI module is implemented on the same PCB board with BB-module and RF-module. UI HW parts are LCD, backlighting, audio parts, IR, keyboard, power key and vibra.

Figure 1: User Interface

BB Interface

Signal	Parameter	Min	Тур	Max	Unit	Notes
IRONX	IR-module on/off	0 0.7 x VBB		0.3 x VBB VBB	V	IR on state lout@2mA
FBUS_RX	IR receive pulse IR receive no pulse	0 0.7 x VBB		0.3 x VBB VBB	V	
FBUS_TX VIBRA	IR transmit pulse IR transmit no pulse From VB	0.7 x VBB 0 0.9	1.0 115	VBB 0.3 x VBB 1.1 140	V V V mA	lout@2mA
ROW (0:4)	ROWS	0 0.7 x VBB		0.3 x VBB VBB	V	Keyboard matrix row
COL (0:4)	COLO	0 0.7 x VBB		0.3 x VBB VBB	V	Keyboard matrix column
VB	Battery Voltage	3.0		4.8	V	Battery voltage (for lights)

Signal	Parameter	Min	Тур	Max	Unit	Notes
PWRONX		0 0.7 x VBB		0.3 x VBB VBB	V	Power on key
ROW5/ LCDCD	LCD command/data	0 0.7 x VBB		0.3 x VBB VBB	V	keyboard matrix row 5 LCD driver code/data selection
SCL	Serial clock for LCD	0 0.7 x VBB		0.3 x VBB VBB	V	LCD driver serial clock
SDA	Serial data for LCD			0.3 x VBB VBB	V	LCD driver serial data
LCDEN	LCD enable	0 0.7 x VBB		0.3 x VBB VBB	V	LCD driver chip select
LCDRSTX	Reset	0 0.7 x VBB		0.3 x VBB VBB	V	LCD driver reset
GND		0		0	V	Ground
BUZZER		0 0.7 x VBB 440 0		0.3 x VBB VBB 4700 50	V V Hz %	PWM low level PWM high level Buzzer PWM fre- quency PWM duty cycle
VBB		2.7	2.8	2.9	V	Logic supply voltage
LIGHT		0 0.7 x VBB		0.3 x VBB VBB	V	Illumination control
EARN			17.6	788	mV	Connected to COBBA EARN output.
EARP			17.6	788	mV	Connected to COBBA EARP output.
CCUT	Charging control	0 0.7 x VBB		0.3 x VBB VBB		Stops charging

LCD Module Interface

Pin	Line Symbol	Parameter	Min	Typical	Мах	Unit	Notes
1	VBB	Supply voltage	2.7	2.8	2.9 300	V uA	
2	SCLK	Serial clock input	0 0		4.0 VBB	MHz	VBB=2.7V
3	SDA	Serial data input	0 0.7 x VBB		0.3 x VBB VBB	V	
4	LCDCDX	Control/display data flag input	0 0.7 x VBB		0.3 x VBB VBB	V	Control Data
5	LCDCSX	Chip select input	0 0.7 x VBB		0.3 x VBB VBB	V	Active
6	OSC	External clock for LCD	30.4	32.0	33.6	kHz	Connected to VBB on PCB
7	GND	Ground		0		V	
8	VOUT	DC/DC voltage converter output			9	V	
9	LCDRSTX	Reset	0 0.7 x VBB		0.3 x VBB VBB	V	Active

Figure 2: View through LCD Cell

Bottom Connector Signals

Name	Min	Тур	Max	Unit	Notes
XMICP,		2.2		kΩ	Input AC impedance
XMICN			1	Vpp	Maximum signal level
	1.47		1.55	V	Mute (output DC level)
	2.5		2.9	V	Unmute (output DC level)
	100		600	μΑ	Bias current
		60	350	mV	Maximum signal level
XEARP,		47		W	Output AC impedance (ref.GND)
XEARN		10		μF	Series output capacitance
	16		300	W	Load AC impedance to GND (Headset)
		6.8		kΩ	Load AC impendance to GND (Accessory)
			1.0	Vpp	Maximum output level (no load)
		22	626	mV	Output signal level
		10		kΩ	Load DC resistance to GND (Accessory)
	16		1500	W	Load DC resistance to GND (Headset)
		2.8		V	DC voltage (100k pull-up to VBB)
HEADDET		21		μΑ	When accessory is not connected

An external headset device is connected to the system connector XMIC and XEAR lines, from which the signals are routed to COBBA MIC3 microphone inputs and HF earphone outputs.

Functional Description

Audio Control

The audio control and processing is taken care of by the COBBA-GJP, which contains the audio and RF codecs, and the MAD2, which contains the MCU, ASIC and DSP blocks handling and processing the audio signals.

Figure 3: Audio Control

The baseband supports three microphone inputs and two earphone outputs. The inputs can be taken from an internal microphone, a headset microphone or PPH-1 microphones. The microphone signals from different sources are connected to separate inputs at the COBBA-GJP ASIC. Inputs for the microphone signals are differential type.

The MIC1 inputs are used for a headset microphone that can be connected directly to the HS/HF connector. The internal microphone is connected to MIC2 inputs. In COBBA there are also three audio signal outputs of which dual ended EAR lines are used for internal ear piece and HF line accessory audio output. The third audio output AUXOUT is used for bias supply to the headset microphone. PData(2) is used for PPH-1 mute control.

The output for the internal earphone is a dual ended type output capable of driving a dynamic type speaker. The output for the external accessory and the headset is dual ended (differential). Input and output signal source selection and gain control is performed inside the COBBA-GJP ASIC according to control messages from the MAD2. Keypad tones, DTMF, and other audio tones are generated and encoded by the MAD2 and transmitted to the COBBA-GJP for decoding.

External audio connections

The external audio connections are presented on the next page. A headset and PPH-1 can be connected directly to the system connector. The headset microphone bias is supplied from COBBA AUXOUT output and fed to microphone through XMICP line.

Figure 4: External Audio Connections

Analog audio accessory detection

In XERP signal there is a 100 k Ω pull-up and 33k pull-down in the transceiver for Head-Det. The HeadDet is pulled up when an accessory is connected, and pulled down when disconnected. To get HeadDet working properly the system connector must be assembled otherwise the transceiver will assume that some accessory is connected. In XMICN signal there is a 1.2 k Ω pull-down in the transceiver and serial 1.2 k Ω from AUXOUT to XMICP. The XMICN is connected to the transistor which is then connected to the HookDet line (in MAD).

External accessory notices powered-up phone by detecting voltage in HeadDet line.

Accessory connected	HookDet*)	HeadDet**)	Notes
No accessory connected	High	Low	
Headset with a button switch pressed	Low	High	XEAR and XMIC loaded (dc)
Headset with a button switch released	High	High	XEAR and XMIC loaded (dc)
Hands free (PPH-1)	Low	High	XMIC loaded (dc)

') HookDet is used only for detect button in headset.

") HeadDet is used only for detect that some accessory is connected into system connector.

NOTE: Charging must stop when the detection sequences are done! CCUT signal at high stops charging.

Headset detection

The external headset device is connected to the headset connector, from which the signals are routed to COBBA headset microphone inputs and earphone outputs. In the XMICN line there is a 1.0 k Ω pulldown in the transceiver. The microphone is a low resistance pull-up compared to the transceiver pulldown.

When there is no call going, the AUXOUT is in high impedance state and the XMICN and XMICP are pulled down. When a headset is connected, the XMICP is pulled up. The switch inside the system connector is connected to the HeadDet line (in MAD), an interrupt is given due to both connection and disconnection.

NOTE: If the headset is connected switch closed, the transceiver can not detect if the headset or PPH-1 in power off mode is connected. When switch is released to open the transceiver can not any more detect the headset without polling by SW.

Headset switch detection

In the XMICN line there is a 1.0 k Ω pulldown in the transceiver. The microphone is a low resistance pull-up compared to the transceiver pulldown. When a remote control switch is open, there is a capacitor in parallel with the microphone, so the XMICN is pulled up and HookDet pulled closed, the XMICN is pulled down via the microphone and HookDet is pulled up. So both pressing and releasing of the button gives an interrupt when AUX-OUT is set to 2.1 V.

PPH-1 detection

The external Plug and Play PPH-1 device is connected to the system connector, from which the signals are routed to COBBA headset microphone inputs and earphone outputs. In the XMICN line there is a 1.0 k Ω pull-down in the transceiver. The PPH-1 has a low resistance pull-up compared to the transceiver pull-down. When there is no call going, the AUXOUT is in high impedance state and the XMICN and XMICP is pulled down. When a powered PPH-1 is connected, the XMICP is pulled up. The switch inside the system connector is connected to the HeadDet line (in MAD), an interrupt is given due to both connection and disconnection.

The PPH-1 device has two operating mode devices with external microphone and without external microphone. When internal microphone is used the detection signal (EAD) is higher than when external microphone is used.

NOTE I: If the PPH-1 is connected in power off mode, the transceiver can not detect if the device is a headset or a PPH-1 connected. When PPH-1 is powered on it is possible to detect when case of PPH-1.

NOTE II: If the external microphone is connected from or disconnected to PPH-1 it is not possible for the transceiver to detect when that happens.

Internal audio connections

The speech coding functions are performed by the DSP in the MAD2 and the coded speech blocks are transferred to the COBBA for digital to analog conversion, down link direction. In the up link direction the PCM coded speech blocks are read from the COBBA by the DSP.

Display Circuit

The display circuit includes LCD module UX7 and two capacitors. The LCD module is COG (Chip on Glass) technology. The connection method for chip on the glass is ACF, Adhesive Conductive Film. The LCD module is connected to the UI board with STAX elastomer. Capacitors are placed on the PCB.

The display driver includes HW-reset, voltage tripler or quadrupler which depends on temperature, temperature compensating circuit and low power control. Driver includes 84x48 RAM memory which is used when some elements are created on the display. Elements can be created with software. Driver doesn't include CG-ROM. One bit in RAM is the same as one pixel on the display.

Figure 5: Display Circuit

Keyboard

Matrix size is 5 rows and 5 columns. Scanning is used for keyboard reading. Rows and columns are connected to the MAD interface

Figure 6: Keyboard

ROW/COL	0	1	2	3	4
0	SLIDE SWT	Side Key	Send	End/Mode	Side key
1	NC	Soft left	Up	Down	Soft right
2	NC	1	4	7	*
3	NC	2	5	8	0
4	PWR switch	3	6	9	#

NC = Not Connected

Power Key

Micro switch is used as a power key on the UI module. Circuitry includes the micro

switch and two diodes which are needed for MAD interface. Power key is connected to CCONT. Power switch is active in LOW state. Power key is connected to ROW4.

Backlighting

Switching circuits for backlighting are placed on the UI module. Display and keyboard lighting are connected together. When LIGHT-signal is HIGH the lights are on and when LIGHT-signal is LOW state lights are off.

Figure 7: Backlighting

Backlighting is made by LED's, three LED's on the right and three on the left side of the display. LED's are compatible with CL270-YG and those are side illuminating. Light is on when LIGHT-signal is in the HIGH state.

The keyboard backlighting is made by 6 LED's. The LED's are compatible with CL190-YG. Backlighting is on when LIGHT-signal is on HIGH state.

Buzzer

Alerting tones and/or melodies as a signal of an incoming call are generated with a buzzer that is controlled with a PWM signal by the MAD via UISWITCH. Also key press and user function response beeps are generated with the buzzer. The buzzer is a SMD device and is placed on the mother board. Target for SPL is 100dB (A) at 5cm.

Figure 8: Buzzer

Speaker

Speaker circuit includes pads for speaker and 2 capacitors, 2 ferrites for EMC protection.

The speaker is sealed to the A-cover with gasket and UI PCB with supporting light guide. With that the frequency response is more constant. The speaker does not need holes for PCB. This gives reliable sound quality for the phone and it can be estimated in several environments. Arrangement is a leak tolerant speaker.

The low impedance, dynamic type earphone is connected to a differential output in the COBBA audio codec. The electrical specifications for the earphone output are shown below. The voltage level at each output is given as reference to ground. Earphone levels are given to 32 ohm load.

	Nominal	Maximum	Notes
COBBA output, differential, 6dB gain	17.6mV	788mV	ENGINE - UI Interface; Estimate, must be checked with final ear- piece construction
Earpiece sound pressure (sensitivity +28dBPa/V 1kHz)	-7dBPa	+26dBPa	Measured as shielded (in brackets with leak ring)

Figure 9: Speaker

Microphone

The internal microphone is placed on the B-cover. Microphone is OMNI directional. The microphone requires a bias current to operate. The bias current is generated from VCOBBA supply with a transistor. EMC protection parts are implemented on the mother-board.

Pin	Name	Min	Тур	Max	Unit	Notes
X300/2	MICP		0.55	4.1	mV	Connected to COBBA MIC2N input. The maxi- mum value corresponds to 1kHz, 0 dBmO net- work level with input amplifier gain set to 32 dB. Typical value is maximum value - 16 dB
X300/1	MICN		0.55	4.1	mV	Connected to COBBA MIC2P input. The maxi- mum value corresponds to 1kHz, 0 dBmO net- work level with input amplifier gain set to 32 dB. Typical value is maximum value - 16 dB

Figure 10: Microphone

Vibra Alerting Device

A vibra alerting device is used for giving silent signal to the user of an in coming call. Vibra is located in the phone. The vibra is controlled with a PWM signal by the MAD via UISWITCH.

Signal	Parameter	Min	Тур	Max	Unit	Notes
M300/1		1.0	1.1	2.0	V	Measured against M300/2
l _{vibra}	Rated load current Rated load speed	7000	115 8000	140 12000	mA rpm	

Figure 11: Vibra Alerting Device

IR Module

An infrared transceiver module is designed to substitute an electrical cable between the phone and a PC. The infrared transceiver module is a stand alone component capable to perform infrared transmitting and receiving functions by transforming signals transmitted in infrared light from and to electrical data pulses running in two wire asynchronous databus. IR is located at the left bottom corner of the product.

Signal	Parameter	Min	Тур	Max	Unit	Notes
IRONX	IR-module on/off	0.7 x VBB 0		VBB 0.3 x VBB	V	lout@2mA, IR is at off state IR, is at on state
FBUS_RX	IR receive no pulse IR receive pulse	0.7 x VBB 0		VBB 0.3 x VBB	V	
FBUS_TX	IR transmit pulse IR transmit no pulse	0.7 x VBB 0		VBB 0.3 x VBB	V	lout@2mA

The module is activated with an IRONX signal by the MAD, which supplies power to the module. The IR datalines are connected to the MAD accessory interface Acclf via FBUS. The Acclf in MAD performs pulse encoding and shaping for transmitted data and detection and decoding for received data pulses.

The data is transferred over the IR link using serial data at speeds 9.6, 19.2, 38.4, 57.6 or 115.2 kbits/s, which leads to maximum throughput of 92.160 kbits/s. The IR module used does not comply with the IrDA 1.0 specification (InfraRed Data Association), which is based on the HP SIR (Hewlett-Packard`s Serial InfraRed) concept. Maximum transmission distance is set to 60cm.

In IR transmission a light pulse corresponds to 0-bit and a "dark pulse" corresponds to 1bit.

Figure 12: IR Transmission The FBUS cannot be used for external accessory communication, when the infrared mode

Figure 13: IR Module

Programmes After Market Services NSB-7 Series Transceivers

Product Variants

Table of Contents

Product Variants	Page No 1
Transceiver NSB-7	
Modules	4
Exploded View of Transceiver NSB-7	5
Assembly Parts of NSB-7	6

NOKIA

PAMS Technical Documentation

List of	f Figures	
		Page No
Fig 1	Exploded view of Transceiver NSB-7	5

Transceiver NSB-7

The NSB-7 is a single band transceiver unit designed for the GSM1900 networks. It is a GSM1900 power class 1 (1W) transceiver.

The plug-in SIM (Subscriber Identity Module) card is located inside the phone. SIM card is accessed after removal of B-cover and battery.

NOTE: The Service Manual is intended for use by qualified service personnel only.

Modules

Basic Transceiver NSB-7	0503440
• System Module RB9	0201512
 Mechanics MNSB7NX 	0262160
 Software SW NSB-7 	0241268

Exploded View of Transceiver NSB-7

Figure 1: Exploded view of Transceiver NSB-7

Assembly Parts of NSB-7

CIRCUIT REF. /	1			
ITEM	Ω'TY	CODE	DESCRIPTION	VALUE, TYPE
1001		9456862	A-cover assy	DMC03126
1002		9790398	Keymat assy NSM-3	DMC02324
Or		9790448	Keymat assy US NSB-7	
1003		9490095	LCD module assy	DMC02362
1004		9780250	Connector elastomer silicon stax	
1005		4700127	RTC battery	
1006		5140067	Speaker + spring 103+3 dB	
1007		0201512	RB9 radio module	
1008	6	6150029	Screw M1.6x4.5 flat head 0.8mm (Us	e 17 Ncm torque)
1009		9490133	B-cover assy	DMC02341
1010		5409095	DC & HS connector	
1011		6800041	Vibra motor assy	
1012		5409117	SIM connector	
1013		5140175	Microphone+holder+springs	
1014		5219019	Volume switch up/down	
l015		9790397	Volume key	DMD05078
l016		5409093	Battery connector 4 pole	
l017		9560085	SIM spring	DMD05211
1018		9456594	Battery cover	DMD05082
1019		9480526	Buzzer gasket	
1020		9460327	A-cover fixing left	DMD05127
1021		9460328	A-cover fixing right	DMD05128
1022		9451600	IR window	
1023		0660210	Antenna pifa 1850-1990 MHz GSM	
1024		9510545	Battery latch spring	DMD05129
1025		9451601	Battery latch	DMD05083

Programmes After Market Services NSB-7 Series Transceivers

Service Software Instructions

Table of Contents

rvice Software Instructions	Page 1
Service Software	
General	
Hardware requirements for Windows 3.11	
Hardware requirements for Windows 95	
Software Environment of the Support Modules	6
Servicing Equipment	7
Installation	
Mechanical Connections	
Installing the Service Software on PC Hard Disk	
First time installation of WinTesla:	
Installation of NSB-7 support modules (WinTesla already installed):	
Common Properties of the User Interface	
Login Dialog	
Main Window	
Menu Bar	
Product	
Configure	
Tuning	
Testing	16
Software	
Dealer	
View	
Phone Identity Window	
Heln	18
Mouse Cursors	19
Reserved Kevs	
Short Cut Function Keys	19 19
Alt Hot Keys	
Ctrl Hot Keys	
Shift Hot Keys	20
Key Strokes	20 20
Help Functions	
Dialog boxes	23 23
Common Dialog boxes	23 23
Note Message Box	23 23
Ouery Message Box	
Error Message Box	+2 /1
Custom Dialog boxes	24 クト
Ruttons	2J ク도
Reporting Status	20 າເ
NCR_7 FEATURES	20∠ רכ
Мели har	ע
Product	
New command	/∠∠ו רר
Open command	/∠
uptil Cultifianu	/ 2
Normal Mode	28
---------------------------------------	-----
Local Mode	28
Faultlog command	29
Activate Faultlog	29
Edit Faultlog	29
Exit command	29
Tuning	.30
RX Filter Calibration command	30
RX Calibration command	32
RX AM Suppression command	35
Tx Power command	37
Tx I/Q command	41
Energy Management Calibration command	43
Testing	.46
RF Controls command	46
RSSI Reading command	51
Self Tests command	52
ADC Readings command	55
Audio command	56
Internal Audio Loops	57
User Interface command	59
Call Simulation command	59
Noise Sensitivity command	62
IR Test command	63
Vibra Test command	64
Software	.65
Product Profile command	65
Start Up Self-tests command	67
Set Factory Values command	68
Phone Identity command	69
Warranty State command	73
Production Data Edit command	75
Dealer	.76
User Settings command	76
Short Code Memory command	77
SCM & User Settings command	79
Restore User Defaults command	80
Set UI/DEV Default Values command	82
Operators Settings command	84
IWR Swap command	85
Flash Phone command	86
View	.91
Quick/RF Info command	91
Phone Information command	93
Tuning Instructions	95
General	.95
During tuning, proceed as follows:	95
Required Equipment	.96

Equipment Setup	96
Equipment Setup for Calibration and Tuning with RA5	97
Equipment Setup for Testing Audio & Charging	
Flash Concept with JBU-6	99
Testing Without Covers - Using Test-frame MJS-9	100
Flashing With FLA-10	
POS Flash Concept with FLA-10	102
Warranty Transfer	103
Tuning Steps	
1. Coupler Module RA5 Attenuation Measurements	104
2. RX and TX Tuning with RA5	106
3. RX Filter Calibration	107
4. AM suppression tuning	108
5. I/Q Modulator Alignments	108
6. Energy Management Calibration	109
Appendix 1, Vocabulary	110

List of Figures

		Page No
Fig 1	Equipment Setup for Calibration and Tuning	
Fig 2	Equipment Setup for Testing Audio & Charging	
Fig 3	Flash Concept with JBU-6	
Fig 4	Testing Without Covers- Using Test-Frame MJS-9	100
Fig 5	Flashing With FLA-10	101
Fig 6	POS Flash Concept with FLA-10	102
Fig 7	Warranty Transfer	103

Service Software

General

To run the Service Software, a parallel port software protection device (PKD-1) has to be connected. TDF-4 box must connected to PC for flashing purposes. The test functions send test messages from PC to mobile stations (MS) and receive results and show them in the PC display. The messages can be sent via M2BUS or FBUS.

Note: if this software is to be run on lap top's, the power saving feature MUST be switched off.

Hardware requirements for Windows 3.11

The recommended minimum hardware standard to run Service Software is any computer which is 386 33 MHz or greater with at least 4 MB of memory and VGA type display (640 x 480). This assumes that only the WinTesla with phone module is active, i.e. other Windows packages are not running in the background.

Hardware requirements for Windows 95

The recommended minimum hardware standard to run Service Software is any computer which has Pentium processor, memory 8 MB and meets HW requirements recommended by Microsoft.

Software Environment of the Support Modules

The Service Software user interface is intended for the following environments: Microsoft Windows 3.11, 95 and NT. For those who are familiar with Windows environment this application will be easy to use. Detailed information about Windows and application usage can be found from the relevant Microsoft Windows Users Guide.

As an ordinary Windows application, the main idea in the user interface is that selections are made with menus, push buttons and short-cut keys. Selections can be done by using keyboard and/or mouse. There is always a status bar displayed at the bottom of the main window which contains information about current actions.

NOKIA

PAMS Technical Documentation

Servicing Equipment

NSB-7 specific:	
Service SW diskette 3.5" for NSB-7	0774080
Flash SW packages on CD	0775227
Service Box JBU-6	0770153
RF Adapter RA5 for JBU-6	0201591
Module Jig MJS-9	0750154
RF Cable XRF-1 (SMA/N-connector)	0730085
RF Cable XRS-3 (N/N-connector)	0730184
Flash Loading Adapter FLA-10	0081346
Soldering Jig MJS-21	0770225
LCD CD9	0770244
Battery Connector Extractor tool SRT-3	0770226
Common to other models but needed also for NSB-7:	
Flash Loading Adapter FLA-7	0770119
Flash Loading Adapter FLA-5	0770085
Prommer FPS-4S	0085095
Flash Security Box TDF-4	0770106
Audio Box JBA-6	0770184
DC-DC Cable SCB-3	0730114
Service Cable XMS-3 (XCM-5 can also be used)	0730174
DC Power Cable PCS-1 for JBU-6	0730012
Service MBUS Cable DAU-9S	0730108
D9 - D9 Cable AXS-4	0730090

PAMS Technical Documentation

D15-D15 Cable AX5	0081275
DC Cable PCC-1	0730053
Software Protection Key PKD-1	0750018
IR module for TDF-4	0750079

*) Note: A number of PC's of an older generation use the Intel, National Semiconductor, or United Microelectronics IC 8250 as the serial port UART. This is a comparatively inefficient circuit for current purposes and does not necessarily support the M2BUS adapter at 9600 baud. The newer UART's NS16450 and NS16550AF of National Semiconductor offer solutions for these problems.

Installation

Mechanical Connections

Caution: Make sure that you have switched off the PC and the printer before making connections.

Caution: Do not connect the PKD-1 key to the serial port. You may damage your PKD-1!

The software controls the phone via a separate adapter connected to the serial port of the PC, and to the telephone's M2BUS (DAU-9S).

Attach the dongle PKD-1 to the parallel port 1 (25-pin female D-connector) of the PC. When connecting PKD-1 to the parallel port, be sure that you insert the computer side of the PKD-1 to the PC (male side). If you use a printer on parallel port 1, install the PKD-1 between the PC and your printer cable.

The PKD-1 should not affect devices working with it. If some errors occur (errors in printing are possible) please try printing without the PKD-1. If printing is OK without the PKD-1 please contact your dealer. We will offer you a new PKD-1 in exchange for your old one.

Installing the Service Software on PC Hard Disk

The program is delivered on a diskette and is copy protected with a dongle PKD-1. It must be present in parallel port when using Service software.

The program must be installed on the hard disk before use.

Keep the original diskette safe to enable upgrading of the program!

First time installation of WinTesla:

Do the following to make a complete WinTesla installation with support for NSB-7:

Insert the WinTesla software diskette into the floppy drive on your computer (i.e. Drive A:)

For Windows 3.1 and 3.11:

Start Windows, type win <Enter>

Open the File manager, open Main window and start File manager.

Select the floppy drive and:

Start installation, double-click the *wt_inst.exe* file.

Follow the instructions on the screen. Write down the directory where WinTesla is installed on your hard disk.

When installation has finished remove the WinTesla software disk from your floppy drive.

Insert the Dongle driver diskette into your floppy drive.

Select the floppy drive and:

Start installation, double-click the *dk2wn16.exe* file.

Follow the instructions on the screen.

When installation has finished remove the dongle driver software disk from your floppy drive.

Continue with the support modules installation.

For Windows 95 and NT:

Open Microsoft Explorer, Select Start - Programs - Explorer

Select the floppy drive and:

Start installation, double-click the *wt_inst.exe* file.

Follow the instructions on the screen. Write down the directory where WinTesla is installed on your hard disk.

When installation has finished remove the WinTesla software disk from your floppy drive.

Insert the Dongle driver diskette into your floppy drive.

Select the floppy drive and:

Start installation, double-click the *dk2wn32.exe* file.

Follow the instructions on the screen.

When installation has finished remove the dongle driver software disk from your floppy drive.

Continue with the support modules installation.

Installation of NSB-7 support modules (WinTesla already installed):

To install the new Service Software Program, follow the steps below:

Insert the new Service software diskette into the floppy drive on of your computer (i.e. Drive A:)

For Windows 3.1 and 3.11:

Start Windows, type *win <Enter>* and open the File manager.

Open Main window and start File Manager, select the floppy drive.

Start installation, double-click the nsek13i.exe file.

Follow the instructions on the screen.

For Windows 95 and NT:

Open Microsoft Explorer, select Start - Programs - Explorer

Select the floppy drive.

Start installation, double-click the *nsek13i.exe* file.

Follow the instructions on the screen.

Common Properties of the User Interface

This chapter describes how the User Interface CLF (Common Look and Feel) must appear to the user.

The User Interface MUST be capable of being driven without the use of a mouse, as the service engineer rarely has space on the bench to use a mouse.

Login Dialog

When the Service Software application is invoked, by checking on the Service Software icon, the Login dialog box will be displayed on the screen.

Nokia logo and application name bitmap (-)

Displays Nokia logo and name of the application.

Application version static text (-)

Contains the name and version of the application.

Copyright notice static text (-)

Copyright is informed as: "Nokia Mobile Phones (c) 1996. All Rights Reserved".

Login Box edit box (-)

The user Login ID edit box, where the user enters his/her faultlog user name. (See Faultlog User Guide)

OK button (default key)

The user name is stored in memory and the dialog box is closed. When the dialog box is closed, the application starts.

Cancel button (ESC)

The Dialog box is closed and application is started, but the Faultlog feature is disabled.

Help button (F1)

Activates the Windows Help application and displays context sensitive Help.

	-	1
M	ain	Window
	am	

🌒 Win T	esla								_ 8 ×
Product	<u>C</u> onfigure	Tuning	T <u>e</u> sting	<u>S</u> oftware	<u>D</u> ealer	⊻iew	<u>H</u> elp		

NSB-7 AS User Interface DLLIVersion 03.01.00 (May 09 2000) NUM

Title bar

The *title bar* is located at the top of the window.

A title bar contains the following elements:

- Application Control-menu button
- Maximise button
- Minimise button
- Name of the application
- Restore button

The properties of these elements and their usage is described in Ref 3- Microsoft Windows Version 3.1 Users Guide chapter one (Windows Basics) and chapter two (Application Basics).

Menu bar

The menu bar is below the title bar and contains all available menu selections. The menu bar is a dynamic element and is dependent on the dongle type fitted, and whether a phone is connected.

Underlined characters in menu names and options indicates that the menu selection can

be done by pressing Alt+ <u>underlined character</u>. Options can also be selected by activating menu bar with Alt- key (or F10 key) and using arrow-keys to highlight the desired menu. In that case, selection is done by pressing *Enter*.

Menus can also be selected by using the mouse as described in Ref 3-Microsoft Windows Version 3.1 Users Guide

Status bar

The status bar is displayed at the bottom of the Service Software main window. The status bar contains information about the menu selections and events.

The left area of the status bar describes the actions of menu items as the user uses the arrow keys to navigate through menus.

The status bar texts are explained in detailed in each of command's description.

The right areas of the status bar indicate which of the following keys are latched down:

Indicator	Description
USER	Entered Login ID.
САР	The Caps Lock key is latched down.
NUM	The Num Lock key is latched down.
SCRL	The Scroll Lock key is latched down.

Tool bar

The *tool* bar is NOT defined and will not be implemented until specified by this document.

Menu Bar

The Service Software package will have two menu bar configurations. The first, is an abbreviated version that contains the minimum number of menus that allows package configurations when a phone is NOT connected. The second is described below:

The menu bar MUST only contain the follow menus for the Service Software package when a phone is connected:

- <u>P</u>roduct*
- <u>C</u>onfigure*
- <u>T</u>uning
- <u>T</u>esting
- <u>S</u>oftware
- <u>D</u>ealer
- <u>V</u>iew
- <u>H</u>elp*

* - always displayed, even if no phone is connected.

A menu is broken down into sections that are indicated with menu separators. Each sections identifies a logical difference from itself and other sections, i.e. between transmitter and receiver. Any items that are required to be added to a menu lists will be added on the bottom of the appropriate menu section list. If a new item is to be added which is common to two or more phone types, then that menu item will become a common menu item.

The menu lists will use the Microsoft [...] symbol after an item name to indicate that selecting that item will NOT initiate an operation immediately, i.e. a dialog box will be displayed for the user to select options or type in data and press the OK button before the operation is performed.

NOKIA PAMS Technical Documentation

Ctrl+R

۲

•

New

<u>O</u>pen...

Initialise

Faultlog

Exit

FastNAM....

FLS-1 Remote Update

Close

Product

The Product menu contains at least the following menu items:

- <u>N</u>ew Ctrl+R
- <u>O</u>pen...
- <u>C</u>lose
- <u>Initialize</u>
 Normal Mode
 - •Local Mode Shift+F5
- <u>F</u>aultlog
 - Activate Faultlog...F9
 - Edit Faultlog...
- E<u>x</u>it Alt+F4

<u>C</u>onfigure

The Configure menu contains at least the following items:

- <u>O</u>ptions...
- <u>B</u>uses...
- <u>D</u>irectories...
- <u>F</u>aultlog...
- IWR Swap

<u>T</u>uning

The Tuning menu contains at least the following menu sections:

- RX Filter Calibration...
- <u>RX</u> Calibration...
- <u>AM Suppression</u>...
- Tx <u>P</u>ower...
- Tx I/<u>Q</u>...
- <u>Energy Management Calibration</u>...

<u>T</u>esting

The Testing menu contains at least the following sections:

- <u>R</u>F Controls...
- RSSI Reading ...
- <u>S</u>elf Tests
- <u>A</u>DC Readings
- A<u>u</u>dio
- <u>U</u>ser Interface
- <u>Call Simulation</u>
- <u>N</u>oise Sensitivity...
- <u>I</u>R Test
- <u>V</u>ibra Test...

RX <u>Filter</u> Calibration... <u>R</u>X Calibration... <u>A</u>M Suppression...

Tx Power...

Tx I/<u>Q</u>...

Energy Management Calibration...

<u>R</u> F Controls RSSI R <u>e</u> ading Self Tests	
ADC Readings	
Audio •	
User Interface	
<u>C</u> all Simulation <u>N</u> oise Sensitivity	
<u>I</u> R Test	
<u>V</u> ibra Test	

NOKIA PAMS Technical Documentation

Software

The Software menu contains at least the following menu sections:

- <u>Product Profile...</u>
- <u>Start Up Self-tests...</u>
- Set Factory <u>V</u>alues
- Phone Identity...
- <u>Warranty State...</u>
- Production <u>D</u>ata Edit...

<u>D</u>ealer

The Dealer menu contains at least the following menu sections:

- <u>U</u>ser Settings...
- <u>Short Code Memory...</u>
- SCM & User settings ...
- <u>R</u>estore User Defaults...
- Set UI/DEV Default Values ...
- Operators Settings...
- <u>I</u>WR Swap...
- <u>Flash Phone...</u>

View

The View menu contains at least the following sections:

- <u>Q</u>uick/RF Info...
- <u>Phone Information</u>...

<u>P</u> roduct Profile	
<u>S</u> tart Up Self-tests	
Set Factory <u>V</u> alues	
Phone Identity	
Warranty State	
Production Data Edit	

<u>U</u> ser Settings
<u>S</u> hort Code Memory
SC <u>M</u> & User Settings
<u>R</u> estore User Defaults
Set UI/DEV Default <u>V</u> alues
Operator Settings
<u>I</u> WR Swap

Quick/RF Info... Phone Information...

Elash Phone...

Phone Identity Window

The Phone Identity window should contain, as a minimum, the following data:

- Software Version(s)
- Hardware Version(s)
- Serial Number(s)
- Product Code

This window will only be used as a display window and therefore will not allow editing of the displayed data. This window will not contain any controls other than a scroll bar.

<u>H</u>elp

The Help menu contains at least the following menu items:

- <u>C</u>ontents
- <u>Search for Help On...</u>
- <u>H</u>ow to use Help
- <u>A</u>bout WinTesla

<u>Contents</u> Search for Help On F	1
How to Use Help	
About WinTesla	

Mouse Cursors

The standards Windows pointer will be used as the mouse cursor.

During time consuming tasks e.g. communication to phone, an hour glass will be shown informing the user that a task is in progress. The application uses the hour glass cursor to inform user that the application has taken the control and any actions from user will be ignored.

When a function is initiated, the hour glass will be displayed and when the function has finished the mouse pointer will return to normal.

Reserved Keys

The following Hot keys and Short Cut keys are reserved either as Microsoft standard keys or as part of the Common Look and Feel specified by this document.

Кеу		Description	Defined by		
F1		Context Sensitive Help	Microsoft		
F5		Normal Mode	NMP		
Shif	t+F5	Local Mode	NMP		
F9		Activate Faultlog	NMP		
F10		Go to Menu Bar	Microsoft		
Ctrl	+F4	Close Active Window	Microsoft		
Alt Hot Key	ys				
Кеу		Description	Defined by		
Alt+	-F4	Exit Active Application	Microsoft		
Alt+	-H	Help	Microsoft		
Ctrl Hot Keys					
Кеу		Description	Defined by		
Ctrl	+N	File – New	Microsoft		
0.1	•	<u> </u>	NA: C.		
Ctrl	+0	<u>File – Upen</u>	Wicrosoft		

Short Cut Function Keys

NSB-7		NOKIA
Service Software Instruc	tions	PAMS Technical Documentation
Ctrl+P	<u>F</u> ile – <u>P</u> rint	Microsoft
Ctrl+R	<u>P</u> roduct – <u>N</u> ew	NMP
Shift Hot Keys		
Кеу	Description	Defined by
Shift+F5	Local Mode	NMP
Key Strokes		
Кеу	Description	Defined by
Alt+P	<u>P</u> roduct Menu	NMP
Alt+P,N	<u>N</u> ew	NMP
Alt+P,O	<u>O</u> pen	NMP
Alt+P,C	<u>C</u> lose	NMP
Alt+P,I	Initialize Pop-up	NMP
Alt+P,I,N	<u>N</u> ormal Mode	NMP
Alt+P,I,L	Local Mode	NMP
Alt+P,F	<u>F</u> aultlog Pop-up	NMP
Alt+P,F,A	Activate Faultlog	NMP
Alt+P,F,E	<u>E</u> dit Faultlog	NMP
Alt+P,X	Exit Application	NMP
Alt+C	<u>C</u> onfigure	NMP
Alt+C,0	<u>O</u> ption	NMP
Alt+C,D	<u>D</u> irectories	NMP
Alt+C,F	<u>F</u> aultlog	NMP
Alt+C,G	GPIB instruments (disabled)	NMP
Alt+T	Tuning Menu	NMP

NOKIA

PAMS Technical Documentation

Alt+T,R	RX Calibration	NMP
Alt+T,X	T <u>x</u> Power	NMP
Alt+T,Q	Tx I/ <u>O</u>	NMP
Alt+T,E	Energy Management calibration	NMP
Alt+E	Testing Menu	NMP
Alt+E,F	R <u>F</u> Controls	NMP
Alt+E,R	<u>R</u> SSI Reading	NMP
Alt+E,S	<u>S</u> elf Tests	NMP
Alt+E,A	ADC Readings	NMP
Alt+E,U	A <u>u</u> dio	NMP
Alt+E,U,I	Audio <u>I</u> nternal	NMP
Alt+E,U,E	Audio <u>E</u> xternal	NMP
Alt+E,U	User Interface	NMP
Alt+E,C	<u>C</u> all Simulation	NMP
Alt+E,N	<u>N</u> oise Sensitivity	NMP
Alt+E,I	IR Test	NMP
Alt+S	<u>S</u> oftware Menu	NMP
Alt+S,P	Product Profile	NMP
Alt+S,S	Start-up Self Tests	NMP
Alt+S,V	Set Default <u>V</u> alues	NMP
Alt+S,I	Phone Identity	NMP
Alt+S,P	Production Data Edit	NMP
Alt+S,F	<u>F</u> lash Phone	NMP
Alt+D	<u>D</u> ealer Menu	NMP

PAMS Technical Documentation

Alt+D,U	<u>U</u> ser Settings	NMP
Alt+D,S	Short Code Memory	NMP
Alt+D,M	SCM & User Settings	NMP
Alt+D,V	Set UI/DEV Default <u>V</u> alues	NMP
Alt+V	<u>V</u> iew Menu	NMP
Alt+V,Q	<u>Q</u> uick/RF Info	NMP
Alt+V,P	Phone Identity	NMP
Alt+H	<u>H</u> elp Menu	Microsoft
Alt+H,I	Index	Microsoft
Alt+H,G	<u>G</u> eneral Help	Microsoft
Alt+H,U	<u>U</u> sing Help	Microsoft
Alt+H,A	<u>A</u> bout WinTesla	NMP
Alt+H,S	About AS Locals	NMP

Help Functions

The Help User Interface will be the standard Windows help tool called WinHelp.

The context sensitive help is activated with F1-key. Help contains also Using Help which describes how to use help facility. Refer to the Windows manual for detailed description on the Windows Help.

Dialog boxes

The Service Software application uses many different dialog boxes. Dialog boxes are used to display data and prompt the user for input.

Dialog boxes are opened from menus or with short-cut keys. Dialog boxes have different properties but some features are common.

All service dialog boxes must be modal, that is, the user will not be able to start another operation without first closing the present dialog box.

All dialog boxes will contain the following entities:

- Help button
- Title bar
- At least one button other than Help
- Application Control-menu Button

Common Dialog boxes

This sections describes the common dialog boxes used in the Service Software package, and the context in which they will be used.

Note Message Box

When the user has made an illegal selection, a note message box dialog will be opened and message text is displayed. The message box is also opened when the program has some information for the user. The size of the dialog box may vary. An information dialog box is recognized by the **!**-icon.

The dialog box will also contain an OK button and a Help button.

OK button (default key):

Acknowledge displayed information and continue. The dialog box is closed after selection.

Help button (Alt+H):

Opens context sensitive help as F1-key does.

Query Message Box

Confirmations and questions are asked in a query message box. A query dialog box is recognized by the ?-icon.

The dialog box will also contain a Yes button, a No button, and a Help button.

Yes button (Alt+Y or Y) (default key):

Accepts confirmation or question.

No button (Alt+N or N):

Denies confirmation or question.

Help button (Alt+H):

Opens context sensitive help as F1-key does.

The buttons may also be OK and Cancel. The operation of these buttons are the same as in the Note dialog box.

Error Message Box

Error message dialog boxes use the Stop-icon. When a "Stop"-dialog box is shown, the current operation is terminated.

The dialog box has a description about the failed operation and reason. Pressing F1 (Help) application opens the appropriate help topic that gives information about recommended actions.

The dialog box will also contain an OK button and a Help button.

OK button (default key):

Acknowledges displayed information and terminate current operation. The dialog box is closed after selection.

Help button (Alt+H):

Open context sensitive help as F1-key does.

Custom Dialog boxes

All custom dialog boxes will contain the pre-defined buttons as defined below in the section – Buttons. However, it is recognized that features may require additional button types, but the addition of these non-standard buttons should be carefully considered to minimise any inconsistencies between implementations.

The buttons will be positioned down the right-hand side of the dialog boxes. The default action will be **OK**, except where that default action could result in an irretrievable failure.

All tuning dialogs that contain tuning results, will display the old tuned data read from the phone before the tuning was performed, as well as the newly tuned data.

List boxes will be used to display lists of data, such as tuning data, test results etc.

The use of Radio buttons should be limited and carefully considered. The use of radio buttons defines the number of possible choices available to the user, which may be acceptable for one project, but not for another.

Buttons

All buttons must be the Microsoft style of buttons.

In general, the default button will be the action button, the Close button or the Yes button, but this will depend on the context of the dialog box that the button is associated with.

(action) button:

Accepts and validates entered settings and values and closes the dialog. If the values have not been changed, then no action will be taken. The status bar will reflect the status. The user should only be queried, if the settings or values accepted will over-write data that CAN NOT be reproduced.

A greyed **OK** button indicates that settings selected by the user are not acceptable.

Close button:

Closes the current dialog box. Does not send or store anything and closes the dialog. The Close button is only used for dialogs that do not set or change any data.

Cancel button (Esc):

Cancel operation. Does not send or store anything and closes the dialog box.

A greyed **Cancel** button indicates that it is not possible to quit from this dialog box.

Yes button (ALT+Y or Y):

Replies Yes to a question asked of the user.

No button (ALT+N or N):

Replies No to a question asked of the user.

Help button (ALT+H):

Opens context sensitive help as F1-key does.

Reporting Status

The status bar will be used to report the present status to the user. When a feature is initiated, the status bar will be updated with a brief description of the function. The status bar will also be updated at key points in a time consuming function.

If an error is to be reported to the user, it will be displayed in the status bar as well as displayed in a common error dialog box. This will mean the user is not delayed from progressing on to the next operation unless an error occurs, in which case, the user will have to acknowledge the error by pressing the OK button. PAMS Technical Documentation

NSB-7 FEATURES

Menu bar

After Sales SW's menus follow the menu structure specified in WinTesla User Interface Specification. This specification will describe functionality that differs from WinTesla specification.

Product

New command

Activation Status Bar Text

Alt, P, N Re-scan a new phone

Ctrl+R

If phone is changed (with same phone type only serial number is changed) phone will be initialised to local/normal mode (selected in TESLA.INI). If phone is changed to different phone type the current DLLs are unloaded and new ones are loaded for that phone.

If the Quick/RF Info view is open, window will be automatically updated.

If Phone Information view is open, window will be automatically updated.

NOTE: When different type of phone is changed user should select Product/New, so that application recognises phone type change and loads correct menu.

Open... command

Activation Status Bar Text

Alt, P, 0 Force load phone specific functionality

Phone is set to local/normal mode. If no phone is found, connection parameters (from Configure/Busses) are displayed to user and application asks from user does (s)he want to use that connection to flash a phone. If user selects **Yes**, current connection is used and flash only menu is loaded. If user selects **No**, application tries next connection, if there is one.

Initialise command

	Activation	Status Bar Text
	Alt, P, I	
	Opens a sub m	enu which contains the following options:
<u>N</u> orma	l Mode	
	Activation	Status Bar Text

Alt, P, I, N Initialises phone to normal mode

F5

When normal mode has been activated or program has been started, self-test results will be asked from MCU. If fault was found in the tests, an error message is shown. If normal mode has been set successfully (no self test error has been found), and paging listening has been started, the used AFC value is requested from MS.

Initialisation routine checks phone's cellular type and if unsupported phone is detected, application unloads the DLLs.

The After Sales SW sets automatically the MS state to normal mode when needed.

If phone identification view is open, window will be automatically updated. Also if RF Information Window is open it will be updated to quick info view.

NOTE: When phone is changed to an other but phone type does not change, user may select Product/Initialise/Normal Mode instead of Product/New.

Local Mode

Activation Status Bar Text

Alt, P, I, L Initialises phone to local mode

Shift+F5

Selection will change the MS state to *local*. When user selects item from Testing or Tuning menus, the After Sales SW software will change automatically the MS state to local.

The After Sales SW sets automatically the MS state to normal mode when needed.

Also if quick info view is open it will be updated to RF Information view.

NOKIA

PAMS Technical Documentation

Faultlog command

aulti	og commanu	
	Activation	Status Bar Text
	ΛI+ D E	
	АЦ, Γ, Γ	
	Opens a sub	menu. Only enabled when user has logged in.
<u>A</u> ctiva	ate Faultlog	
	Activation	Status Bar Text
	Alt, P, F, A	
	F9	
	Activates the	faultlog. Only enabled when user has logged in.
<u>E</u> dit F	aultlog	
	Activation	Status Bar Text
	ΔI+ Ρ Ε Ε	
	ΛΙΙ, Ι , Ι , Ε	
	Allows user t	o edit faultlog entries. Only enabled when a user has logged in.
E <u>x</u> it c	ommand	
	Activation	Status Bar Text

Alt, P, X

Exits the WinTesla application.

<u>T</u>uning

The tuning menu offers functions for ME adjustments.

RX Filter Calibration... command

Activation Status Bar Text

Alt, T, M Open RX Measurements dialog box

Starts RX Filter Calibration tuning for the phone.

Select <u>F</u> unction	<u>M</u> easure
RX Filter Calibration (Automatic)	<u>S</u> ave
egisters	
ime:	
Value	
Decimal:	
Hex:	<u>H</u> elp
Binary MSB Binary LSB	
TOS_I: 759	
DTOS_Q: 726	
IQUAD_Q: 745	
	Close

Dialog mode: Modal

RX Measurements dialog has the following items:

Select Function list box:

Shows list of automatic selections.

Value group:

This group has several items. At the bottom there is a list of registers and values they currently have. Double clicking a record from the list will bring it's name to the name edit box. The value is shown in the three different format decimal, hexadecimal and binary. All these controls display the same value and changing one causes changes to others too.

PAMS Technical Documentation

Measure button:

This button activates the measurement.

Save button:

This saves values to the phone.

Close button:

This button closes the dialog without saving anything.

Help button:

This button opens help.

<u>RX</u> Calibration... command

Activation Status Bar Text

Alt, T, R Open RX Calibration dialog box

Starts RX calibration.

The next automatic selections are made when this tuning function is activated:

- Phone is set to local mode
- Update RF information window

The measurement is started automatically when RX calibration is entered. The measurement is done in five steps:

1. User is requested to put signal generator to high input level (read from.INI file).

RX Calibration				
	Set RF generator to high reference:			
•	Frequency 1960.067710 M Level -55.000000 dBn			
	Note: attenuations			
Cancel				

2. Measurement with high input level is executed

3. User is requested to put signal generator to low input level (read from.INI file).

RX Calib	ration	×	
	Set RF generator to low reference:		
<u>•</u>	Frequency Level	1960.067710 MHz -85.000000 dBm	
	Note: attenual	ions.	
[(OK)	Cancel	

- 4. Measurement with low input level is executed
- 5. The **RX Calibration** dialog will be updated when previous steps are done.

NOKIA PAMS Technical Documentation

RX C	alibr	ation			×
AI AI P:	FC i 7C i 7C s 5W s	nformatio nit val lope lope	n:	.: 34 .: 506 .: 111	<u>S</u> ave <u>C</u> ancel <u>H</u> elp
	AGC	DAC	Voltage		<u>R</u> epeat
	0 dE	2185	4.74 V		
	3 dE	8 2825	6.08 V		
Ш. 1	6 dE	3465	7.43 V		
11 -	9 dE	3785	8.10 V		
1	2 dE	8 4425	9.44 V		
1 1	5 dE	5056	10.77 V		
	8 dE	\$ 5690	12.10 V		
2	1 dE	6341	13.46 V		
	4 db	6950	14.74 V		

Dialog mode: modal

RX Calibration dialog has the following items:

AFC information box:

Shows AFC init value, AFC slope and PSW slope values.

AGC List box (ALT+A):

AGC, DAC, Voltage.

Repeat button (ALT+R):

Measurement can be started again by pressing this button.

Save button (ALT+S):

Dialog is closed and tuning is saved to phone.

Cancel button (ESC):

Dialog is closed and tuning is not saved to phone.

When calibration is ended, the DAC value checking is made and if it is not successful, error message is shown.

When exit is made, the next selections are set to the values which were selected before this adjustment.

Operation Mode

Update RF Information window

The exit and the use of AGC-control values is done same way as exit from power level tuning and power coefficient use:

NOKIA

PAMS Technical Documentation

RX AM Suppression... command

Activation Status Bar Text

Alt, T, M, AOpen RX Measurements dialog box

Starts RX AM Suppression tuning for the phone.

RX Measurements	>
Select <u>F</u> unction	<u>M</u> easure
RX AM Suppression (Automatic)	<u>S</u> ave
Registers	
Name:	
Value	
Decimal:	
Hex:	<u>H</u> elp
Binary MSB Binary LSB	
LOP_L P: 165	
LOM_Q_P: 264	
Rssi value: -1024.0	
	<u>C</u> lose

Dialog mode: Modal

RX Measurements dialog has the following items:

Select Function list box:

Shows list of automatic selections.

Value group:

This group has several items. At the bottom there is a list of registers and values they currently have. Double clicking a record from the list will bring it's name to the name edit box. The value is shown in the three different format decimal, hexadecimal and binary. All these controls display the same value and changing one causes changes to others too. Last line shows RSSI value.

Measure button:

This button causes the measurement to be done. When selected following dialog is

©Nokia Mobile Phones Ltd.

shown. Set RF Generator with the following signal:

	modulation de	f P fmod pth	=1970 MHz =-26 dBm =1 kHz =83%		
RX Mea	surements		×		
	fmod = mod depth =	AM modul 1 KHz 83%	ated signal to antenna:		
	P= f=	-26 dBr 1970.0	n 00MHz		
()					

Save button:

This saves the values to the phone.

Close button:

This button closes the dialog without saving anything.

Help button:

This button opens help.

NOKIA

PAMS Technical Documentation

Tx Power... command

Alt, T, X Open TX Power Tuning dialog box

Starts TX power tuning.

Tuning is started automatically with EEPROM values. If values read from EEPROM are not valid then user is able to start the tuning with factory values. There is a notification shown if this happens.

Start Tuning dialog has following items:

- Start Tuning With list box (ALT+S):
- 1 EEPROM Values

Tuning values are load from ME's EEPROM.

2 Factory Default Values

Tuning values are load from ME's flash.

3 Current Values in PC memory

Tuning values are load from program's internal memory.

The next automatic selections are made when this tuning function is activated:

- the BASE power level is selected
- Operation mode = TX pulsed

The **TX Power Tuning** dialog will be activated automatically after value selection.

<u>L</u> evel	Coefficient	Targets	<u>S</u> ave
0	0.763 0.632	29.0 dBm 27.5 dBm	<u>C</u> ancel
2 3	0.524 0.436	26.0 dBm 24.0 dBm	<u>H</u> elp
4 5 6	0.368 0.315 0.274	22.0 dBm 20.0 dBm 18 0 dBm	
7 8	0.242 0.218	16.0 dBm 16.0 dBm 14.0 dBm	C <u>a</u> lculate
9 10	0.200 0.185	12.0 dBm 10.0 dBm	☐ Bas <u>e</u> level
11 12 13	0.174 0.166 0.159	8.0 dBm 6.5 dBm 5.0 dBm	calculation <u>B</u> ase offset:
13 14 15	0.155	3.5 dBm 2.0 dBm	20 dB
BASE TEST	0.120 0.135	-30.0 dBm	

GSM1900 TX Power Tuning dialog:

Dialog mode: modal

To get a clear image, set spectrum analyser as follows:

frequency	1880 MHz (depends on the used ch)
span	0 Hz
resolution bw	3 MHz
video bw	3 MHz
sweep time	10 ms

Tune highest level to 28 dBm

Select power level 11

tune power level to 6 dBm select lowest power level tune lowest power level to 0 dBm press calculate button to calculate other power levels save power level calibration results by pressing Save button.

TX Power Tuning dialog has following items:

Level, Coefficient and Targets list box (ALT+L):

The power is presented in GSM 1900 values. The base power is selected
automatically when the dialog is opened. The test value is not saved to the EEPROM. The test value can be changed during tuning as other power coefficients and the program remembers its value when tuning function is activated later again.

If there is more power levels in the phone that can fit into window the window is scrollable. When phone is initialised the program asks the number of power levels used in the phone.

Only three power coefficients (highest, third smallest and lowest) are needed to tune (left justified Coefficients) and the rest of them are calculated.

The tuning position is highlighted and can be tuned with +/- keys or left/right cursor keys.

Calculate button (ALT+C):

The calculation is activated with this button. The power coefficients which are calculated from the tuned coefficients are displayed on the different columns than the others. All values can be tuned if needed. When **Base level calculation** is checked, base level is calculated.

Base level calculation check box:

If this box is checked the base level is calculated.

Base offset edit box:

This edit box shows the base offset value that user can change. The base level calculation check box must be checked before this value is used. After this value is changed user must do the calculation. **NOTE:** Do not use Enter-button to accept this value.

+/- buttons (+/- and left/right cursor keys):

+ and - buttons will cause power changing by 0.25dB steps. When these keys are used the coefficient value is updated on the tuning window.

Save button (ENTER):

Dialog is closed and tuned values are saved to phone. Base offset is saved to TESLA.INI.

Cancel button (ESC):

Dialog is closed and tuning is not saved to phone.

When selections are used, the power value checking is made and if it is not successful, error message is shown. The test checks that all power coefficients are in descending

order (same order than power levels).

If the power tuning function is ended and EEPROM values are not received or EEPROM fault is noticed, an error message is shown.

When all power coefficients have such values that they don't cause any error messages, they can be saved. The last used tuning power is in use after exit.

The next automatic selection is made when this tuning function is ended:

Operation Mode = RX pulsed

When dialog is closed original band is selected.

NOKIA

PAMS Technical Documentation

Tx I/<u>Q</u>... command

Activation Status Bar Text

Alt, T,Q Open TX I/Q Tuning dialog box

Start Tuning	×
Start TX Power Tuning With:	ОК
1 EEPROM Values 2 Factory Default Values	Cancel
3 Current Values in PC Memory	<u>H</u> elp

To get a clear image, set spectrum analyser as follows:

frequency	1880 MHz (depends on the used ch)
span	200 Hz
resolution bw	10 MHz
video bw	1 MHz
sweep time	1 ms

This function is used for tuning TX I and Q branch DC offset, amplitude difference and phase difference.

Tuning is started automatically with EEPROM values.

The next automatic selections are made when this function is activated:

Operation Mode = TX pulsed

Update RF Information window

TX I/Q Tuning		X
TX I and Q DC Offset:	Amplitude and Phase Difference:	<u>S</u> ave
TX <u>I</u> DC Offset: -9 -100 100	Amplitude Difference: • • • 0.4 -1 1	<u>C</u> ancel <u>H</u> elp
TX Q DC Offset: ▲ ▶ -3 -100 100	Phase Difference: 92.5 95 95	

The TX I/Q Tuning dialog is opened.

Dialog mode: modal

TX I/Q Tuning has following items:

Tune TX I DC Offset scroll bar (ALT+I):

The DC Offset is shown as percents (%) from the + maximum value. 0% means that there is no DC. The value range is -100%...100%. The value is rounded to the nearest integer value.

Tune TX Q DC Offset scroll bar (ALT+Q):

The operation of this function is the same as one above, except with this selection the Ω branch DC Offset is tuned. The value range is -100%...100%. The value is rounded to the nearest integer value.

Tune Amplitude Difference scroll bar (ALT+A):

When this selection is made user can increase or decrease the amplitude difference within 0.1 dB steps. The value range is -1...1.

Tune Phase Difference scroll bar (ALT+P):

When this selection is made user can increase or decrease the phase difference within 0.55 steps. The current phase difference is shown on the tuning window with numbers and bar figure. The value range is 85...95.

Save/OK button (ENTER):

Dialog is closed and tuning is saved to phone. When tuning phone in GSM 1900 band values are only saved to PC memory.

Cancel button (ESC):

Dialog is closed and tuning is not saved to phone.

After each value change the new value is sent to the phone.

The next automatic selection is made when TX I / Q tuning function is ended:

- Operation Mode = RX pulsed
- Update RF Information window

Energy Management Calibration... command

Activation	Status	Bar	Text

Alt, T,E Calibrate Battery Voltage

This function is for battery a/d and charge current tunings.

Before battery a/d tuning is started a voltage setting request is shown to user (Set supply voltage to 10,5 V). Service Battery is in this case JBU-6.

INOTE: Set DC Supply Would in JDU-6 in FLA-5 position:	NOTE: Set DC Su	pply Mode	in JBU-6 in	FLA-5	position!!
--	-----------------	-----------	-------------	-------	------------

When power is connected and user selects Yes to continue, the application displays the **Energy Management Calibration** dialog box:

Energy Management Calibration	×
Settings ▼ 1. Run battery & charger default values ▼ 2. Battery voltage ▼ 3. Charger voltage ▼ 4. Battery size ▼ 5. Battery temperature	<u>R</u> un Close <u>H</u> elp
✓ <u>6</u> . Charge current	
Save without confirmation	
	×

Dialog mode: modal

Energy Management Calibration dialog has following items:

Settings group box:

Contains EM calibration setting check boxes:

1. Run battery & charger default values check box (ALT+1):

Runs battery & charger default values to phone when selected

2. Battery voltage check box (ALT+2):

Calibrates battery voltage A/D value.

3. Charger voltage check box (ALT+3):

Calibrates charge voltage A/D value.

4. Battery size check box (ALT+4):

Calibrates battery size A/D value.

5. Battery temperature check box (ALT+5):

Calibrates battery temperature A/D value.

6. Charge current check box (ALT+6):

Calibrates charging current.

Save without confirmation check box (ALT+S):

When selected, all selected calibrations are saved to phone without confirmation, otherwise user must confirm every A/D value saved to phone. Calibration info is automatically scrolled during confirmation.

Calibration info list box (ALT+S)

Shows information about current calibrations.

Run button (ENTER):

All selected settings are executed.

Close button (ESC):

Dialog is closed.

Help button (ALT+H):

Context sensitive help.

After battery a/d tunings a voltage setting request is shown to user (Set supply voltage to 8.0 V).

EM Calib	oration 🛛 🕅
⚠	Set supply voltage to 8.0 V
	[OK]

T<u>e</u>sting

The Testing sub menu offers functions for ME testing.

RF Controls... command

Activation Status Bar Text

Alt, E,R Open RF Controls dialog box

This function is used for RF testing.

Command opens RF Controls dialog, which contains data for testing and adjustments.

RF Controls		×
Active UnitOp	eration Mode	Close
	<u>C</u> ontinuous	Help
O IX 0	<u>B</u> urst	
		Apply
TX <u>D</u> ata Type: C	ontl 🔽	
TX Power Level: B	ASE 🔽	<u>Set Defaults</u>
		Get Defa <u>u</u> lts
Cont. Mode Ch: 66	1 1960.000000	
Cha <u>n</u> nel: 66	1 1960.000000	
Monitoring Ch: 51	2 1930.200000	
Gain Step Va <u>l</u> : 8		
	A<u>F</u>C: 23	

Dialog mode: modal

RF Controls dialog has following items:

Active Unit group:

RX radio button (ALT+R):

When *RX* is selected, the next functions are made:

Data transmission is deactivated

TX power is deactivated

If operation mode is continuous,

PAMS Technical Documentation

- AGC is controlled
- RX continuous mode channel is activated

RF Information window is updated

The RX value is always given as default.

Note! Function is activated immediately, Apply is not needed.

TX radio button (ALT+T):

When *TX* is selected, the next functions are made:

Data transmission is activated

If operation mode is continuous,

• Operation mode is set to burst

RF Information window is updated

Continuous mode radio button is disabled.

Note! Function is activated immediately, Apply is not needed.

Operation Mode group:

Continuous radio button (ALT+C):

When continuous selection is used,

synthesizer is set to constant frequency

synthesizer channel number is as given with Continuous Mode Channel selection

transmitter power is not connected

if Active Unit is RX, AGC is controlled

Note! Function is activated immediately, Apply is not needed.

Burst radio button (ALT+B):

When burst selection is used,

synthesizer is controlled by using receiving/transmission/measuring synthesizer control sequence

synthesizer channel numbers are as given with Channel/Monitoring Channel selections

if Active Unit is TX, data (selected with TX Data Type) is sent and the TX power is connected

Note! Function is activated immediately, Apply is not needed.

TX Data Type drop list (ALT+D):

This list changes the transmission data type. List consists following options: 0, 1, Random. After Random data selection 0 is used. If Operating Mode is *continuous*, TX Data Type Random causes different data sending than in burst mode.

TX Power Level edit box (ALT+T):

With this value is possible to change the transmission power. The user can give the needed power value or select the test value, which is tuned with TX power tuning function. The test value is found at the end of the list.

TX Power have value OFF and is disabled (greyed) when active unit is RX. When the TX power is tuned with test value (smallest value) the TX Power has value TEST.

Channel edit box (ALT+H):

User can enter here channel number that is used for both transmission and receiving. The frequency of the selected channel is shown after selection.

Monitoring Channel edit box (ALT+M):

This field selects neighbour monitoring channel. The frequency of the selected channel is shown after selection.

Continuous Mode Channel edit box (ALT+C):

To this edit box user can type continuous mode channel which may have all channel numbers.

The used frequency depends on the Active Unit. If Active Unit is RX, then RX frequency is used, else TX frequency. The frequency of the selected channel is shown after selection.

Gain Step Value edit box (ALT+L):

This selection allows user to set up the receiver gain step in continuous mode. There are nine (0...8) steps (0...2 with LNA and 3...8 without LNA). In the burst mode selection is automatic. AFC edit box (ALT+F):

This selection allows user manually tune the 26 MHz clock. Limits are -1023...-1024

Apply button (ALT+A):

Accepts entered values and validates them. After validation application sends corresponding messages to ME. Closes dialog and updates Info Window.

Note! Active Unit and Operation mode are not send with because they are activated immediately.

Set Defaults button (ALT+S):

Sets current values as default Rf Controls values.

Get Defaults button (ALT+U):

Gets default Rf Controls values as current values.

The next automatic selection is made when Quick testing function is ended:

Active Unit = RX

Update RF Information window

The next table shows the dialog's properties on different situations:

ACTIVE UNIT = TX:

TX Data Type: Updated

AGC values: Greyed

Monitoring Channel: Greyed

OPERATION MODE = BURST:

TX Power Level: Updated

Continuous Mode Channel: Greyed

Channel: Updated

OPERATION MODE = CONT.:

TX Power Level: OFF, Greyed

Continuous Mode Channel: Updated

Channel: Greyed

ACTIVE UNIT = RX:

TX Data Type: Greyed

TX Power Level: OFF, Greyed

OPERATION MODE = BURST:

AGC values: Greyed

Continuous Mode Channel: Greyed

Channel: Updated

Monitoring Channel: Updated

OPERATION MODE = CONT:

AGC values: Updated

Continuous Mode Channel: Updated

Channel: Greyed

Monitoring Channel: Greyed

NOKIA

PAMS Technical Documentation

<u>R</u>SSI Reading... command

Activation	Status Bar Text

Alt, E,R Read continuously RSSI value

Command opens RSSI Reading dialog:

Dialog mode: modal

RSSI value is read continuously until user presses ESC-key or Close button to cancel reading.

RSSI Reading dialog has following items:

Close (ENTER) button:

Closes the RSSI Reading dialog. Does not send anything to phone.

Help button:

Context sensitive help.

Self Tests... command

Activation	Status Bar Text
Activation	Jialus Dai TCAL

Alt, E,S Open MCU Self-tests dialog box

Command is used for reading self test results and running self tests.

When the selection is made, the test result is read from ME. The test result will be shown to the user within **MCU Self-test** dialog.

MCU Self-tests	<u>×</u>
Tests:	Close
Instruct (p): Passed 2 MCU RAM Interface. (p): Passed 3 MCU RAM Component. :Not executed 4 MCU EEPROM Interface. (p): Passed 5 MCU EEPROM Component. :Not executed 6 RTC Battery. (p): Not executed 7 CCONT Interface. (p): Not executed 8 A/D Converter. (p): Not executed 9 SW Reset. :Not executed 8 A/D Converter. (p): Not executed 9 SW Reset. :Not executed 8 A/D Converter. (p): Passed 8 A/D Converter. :Not executed 9 SW Reset. :Not executed 8 Security Data. :Passed C EEPROM Tune Checksum. (p): Passed P PM Checksum. (p): Passed F DSP Alive. (p): Passed G COBBA Serial. (p): Passed H COBBA Parallel. (p): Passed J PPM Validity. (p): Passed J PPM Validity. (p): Passed J SW Version. (p): Not executed	Close <u>H</u> elp <u>Run</u> Run <u>A</u> ll R <u>e</u> ad Results
4 MCU EEPROM Interface(p):Passed 5 MCU EEPROM Component	Run <u>A</u> ll Read Results

Dialog mode: modal

MCU Self-test dialog has following items:

Tests list box (ALT+T):

The field "(p)" in the screen example means that the test is also run in power up. The field "/s)" means that this test is selectable one.

Test states are updated according to results received from the phone. Possible test states will be one of the next:

• Passed

- Failed
- No response
- Not executed
- Not valid
- RUNNING....

Note that power-off test have no values, because if test has been passed, power has been turned off. If power-off test fails a special error message window is shown. If no response is received to power off test message in a few seconds, the user is informed by special info window, where user is asked to turn the power on and then press the return key.

Note also that power-off test (if passed) turns power off and power should be reconnected by using the phones key pad after the successful test. After the power has been connected to phone, the normal start-up routines are made and the self-test results are shown in the MCU self-tests menu (i.e. all other than power-up self-tests are in Not executed state after the power-up routines).

Run button (ALT+R):

User can select desired test from list and hit **Run** button. When user selects test to be run the text *RUNNING*... is shown in test state field and test is run. When results are received the test state field is updated according to the result.

If no response was received in the defined time, an *error message box* will be shown and the test state is changed to *No response*. Phone is set to local mode if it is not already.

Run All button (ALT+A):

User can run all listed tests. The text *RUNNING*... is shown in test state field and test is run. When results are received the test state field is updated according to the result. When state field is updated application moves to next test and repeats previous cycle. Phone is set to local mode if it is not already there.

Supported Self Tests

- 1 MCU ROM Checksum.....
- 2 MCU RAM Interface.....
- 3 MCU RAM Component.....
- 4 MCU EEPROM Interface.....

- 5 MCU EEPROM Component.....
- 6 RTC Battery.....
- 7 CCONT Interface.....
- 8 A/D Converter.....
- 9 SW Reset.....
- A Power Off.....
- B Security Data.....
- C EEPROM Tune Checksum.....
- D PPM Checksum.....
- E MCU Download DSP.....
- F DSP Alive.....
- G COBBA Serial.....
- H COBBA Parallel.....
- I EEPROM Sec Checksum.....
- J PPM Validity.....
- K Warranty State.....
- L SW Version.....

NOKIA

PAMS Technical Documentation

ADC Readings... command

Activation	Status	Bar	Text
	5		

Alt, E,A Open ADC Readings dialog box.

Command is used to read and show A/D values from phone.

Command opens ADC Readings dialog.

ADC Readings		×
Battery Voltage	620 4034	mV
Battery Temperature:	7 156	°C
Charge Voltage	0 0	mV
Charge Current	0 0	mA
Battery Type	343 1	mAh
Accessory Detection:	0	
RSSI	407	
RTC Battery Voltage:	831 2981	mV
Hook Information	0	
	-	
Close	<u>H</u> elp	

Dialog mode: modal

ADC Readings dialog has static text field where measurements are updated to window every one second.

ADC Readings dialog has following items:

Close (ENTER) button:

Closes the ADC Readings dialog. Does not send anything to phone.

Help button:

Context sensitive help.

A/D Readings:

Following a/d readings are measured:

Battery Voltage.....:

Battery Temperature....:

Charge Voltage:

Charge Current.....:

Battery Type.....:

Accessory Detection.....:

Hook.....:

RSSI.....:

VCX0 Temperature.....:

Audio... command

Activation Status Bar Text

Alt, E,U

Opens a sub menu which contains following options:

NOKIA

PAMS Technical Documentation

Internal Audio Loops

	Activation	Status Bar Te	xt
--	------------	---------------	----

Alt, E,U,I Open Internal Audio loops dialog box.

Command is used for making internal audio loop tests in Internal Audio Loops dialog.

NOTE:	For	FXTFRNAL		Audio	Box	is	needed
NOIL.	101		10010	/ \uuio	DUA	5	necucu.

ternal Audio Loo	ps	×
Buzzer C <u>V</u> olume On <u>L</u> evel O	© Volume <u>O</u> ff ▼	Close <u>H</u> elp
Freguency:	2500	
- Internal Audio L	.oop	
Input	Output	
	Internal	
C Headeat	C Headeat	
- Loop © Of <u>f</u> © O <u>n</u>		

Dialog mode: modal

Internal Audio Loops dialog has following items:

Buzzer Volume group:

Next three different values can be selected for Buzzer volume:

Volume On radio button (ALT+V):

Turns buzzer on.

Volume Off radio button (ALT+0):

Turns buzzer off.

Level drop down list (ALT+L):

Sets level of a buzzer. Allowed range 0...254

Frequency radio button (ALT+Q):

Turns buzzer off.

Internal Audio Loop group:

Input group:

Next two different values can be selected for input:

Internal radio button (ALT+I):

Turns internal input.

External radio button (ALT+I):

Turns external input.

Headset radio button (ALT+A):

Turns headset input. Note: If Output is not Headset, loop is turned off.

Output group:

Next two different values can be selected for output:

Internal radio button (ALT+T):

Turns internal output.

External radio button (ALT+X):

Turns external output.

Headset radio button (ALT+D):

Turns headset output. Note: If Input is not Headset, loop is turned off.

Loop group:

Next two different values can be selected for loop:

Of<u>f</u> radio button (ALT+F):

Turns audio loop off.

On radio button (ALT+N):

Turns audio loop on.

When dialog is closed with the Buzzer Volume is switched always off. Also internal audio loop is turned off.

User Interface... command

Activation Status Bar Text

Alt, E,U Open User Interface Tests dialog box

Command is used for making display tests in **Display Tests** dialog.

User Interface Test	×
LCD Test Displays	Close
C <u>1</u> . Test Pattern	Help
C 2. Test Pattern	Щогр
J	

Dialog mode: modal

Display Tests dialog has following items:

1. Test Pattern radio button (ALT+1):

In test display 1 all indicators are displayed and the display is filled horizontally.

2. Test Pattern radio button (ALT+2):

In test display 2 all of the indicators are displayed and the display is filled with vertically.

When dialog is closed the phone LCD display is cleared.

Call Simulation... command

Activation Status Bar Text

Alt, E,C Open Call Simulation dialog box

Command is used for making call simulation. Function opens **Call Simulation** dialog.

Call Simulation		×
Settings:		Close
TX Power level:	15	
<u>C</u> hannel:	661	<u>H</u> elp
Monitoring Channe	els:	Apply
Channel <u>1</u> :	512	<u>S</u> et Defaults
Channel <u>2</u> :	513	
Channel <u>3</u> :	514	<u>Get Defaults</u>
Channel <u>4</u> :	515	
Channel <u>5</u> :	516	
Channel <u>6</u> :	517	
	<u> </u>	

Dialog mode: modal

Call Simulation dialog has following items:

TX Power Level edit box (ALT+T):

All power levels can be selected. This updates same parameter as **TX Power Level** in the **RF Controls** dialog. Note that TEST value cannot be selected. If TEST value was in use when Call simulation menu selected, power level is changed to smallest value.

Channel edit box (ALT+C):

This tells the normal operating RF channel number. Normal GSM 1900 channel numbers can be selected. Same channel is used both for transmission and receiving. This updates same parameter as **Channel** in the **RF-Controls** dialog.

Channel 1,2,3,4,5,6 edit box (ALT+1,2,...):

Channels for monitoring are specified with these six selections. All GSM 1900 channel numbers can be used. If more than one selection has same number, the monitoring channel list (neighbour list) will have less than 6 selected channels. The minimum number of monitoring channels is one (all channels have same value). The monitoring channel can also have same value as normal operating channel.

The first monitoring channel updates same parameter as **Monitoring Channel** in the **RF-Controls** dialog.

Apply button (ALT+A):

Validates and sends entered data to ME.

PAMS Technical Documentation

Set Defaults button (ALT+S):

Sets current values as default Call Simulation values.

Get Defaults button (ALT+G):

Gets default Call Simulation values as current values.

Noise Sensitivity... command

Activation Status Bar Text

Alt, E,N Opens Noise sensitivity dialog box

Command is used for noise sensitivity measurement.

The next automatic selections are made when this tuning function is activated:

- Operation mode = RX cont
- AGC = 81 dB

Before function opens **Noise Sensitivity** dialog application prompts:

Noise Se	ensitivity	×
	Set RF generator:	
<u>.</u>	Frequency Level	1960.067710 MHz -92.000000 dBm
	Note: attenuation:	s
[Cancel

Then application opens Noise Sensitivity dialog:

easurements:	Close
Clipping Distance: SNR (A/D converter): Sensitivity Si-Sq	<u>H</u> elp Measurement <u>C S</u> ignal
anges:	
Clipping Distance: - SNR (A/D converter): > 19.8 Sensitivity: <-81.7	

Dialog mode: modal

Noise Sensitivity dialog has following items:

Measurements group:

Clipping distance is the difference to the signal clipping value. SNR is measured in AD converter.

The last value on the display is signal power difference between I and Q branch. The numbers are shown in 0.1dB accuracy. The error messages, "OUT OF RANGE", are shown only if the SNR and/or amplitude difference values are not acceptable.

Signal/Noise radio button (ALT+S/ALT+N):

When buttons are pressed, the RX I and Q burst data is asked, text "SIGNAL MEASURING..." or "NOISE MEASURING..." will come to the measurement group window. The power level value should be -92 dBm during signal measurement.

When signal data is received, distance to clipping signal level is shown as dBs on the display. When either signal or noise measurement results are received "MEASURING" text is removed and measurements are updated to screen. When both measurements (signal and noise) are done at least once, the signal to noise relation and difference are also shown on the display.

When exit is made, the next selections are set to the values which were selected before this adjustment.

- Operation mode
- AGC value

IR Test... command

Activation Status Bar Text

Alt, E,I IR module test

Command is used for making IR module test. Function opens IR Test dialog:

IR Test	
Result	Test
	Close
	Help

Dialog mode: modal

IR Test dialog has following items:

Result box:

Result can be OK/FAILED

Test (ENTER) button:

Starts IR Test.

Close button:

Closes the IR Test dialog.

Vibra Test... command

Activation Status Bar Text

Alt, E, V Vibrator module test

This command is used for testing phone's or battery's vibrator. Function opens **Vibra Test** dialog:

Vibra Test	×
	<u>I</u> est
⊻ibra Value:	Close
	Help

Dialog mode: modal

Vibra Test dialog has following items:

Vibra Value box:

Edit box where you can enter value from 0 to 255.

Test (ENTER) button:

Starts Vibra Test.

Close button:

Closes the Vibra Test dialog. When dialog box is closed also the vibra test is stopped.

PAMS Technical Documentation

<u>S</u>oftware

Product Profile... command

Activation Status Bar Text

Alt, S,P Open Product Profile settings dialog box.

Function is used for making product profile settings.

When command is activated the product profile information is read from EEPROM and **Product Profile** dialog is opened.

Settings: Codec FR Codec FR Second preferred 14.4 Data Not allowed Redial Tope GSM Redial Tone Normal ALS Not active Load File Detions: Most preferred
Codec EFR. Most preferred Codec FR. Second preferred 14.4 Data. Not allowed Redial Type. GSM Redial Tone. Normal ALS. Not active ptions: Most preferred
ptions: Most preferred
Most preferred

Dialog mode: modal

Product Profile dialog has following items:

Settings list box (ALT+E):

A list where user can select desired setting.

User can toggle setting with following **Options** drop list or by double clicking desired setting in list box.

Options drop list (ALT+0):

List allows user to set options to each settings which are listed in Settings list box.

Save (OK) button (ENTER)

Selections are accepted and saved to EEPROM.

Cancel button (ESC)

Selections are ignored and control is returned back to main menu.

NOKIA

PAMS Technical Documentation

Start Up Self-tests... command

	Activation	Status	Bar	Text
--	------------	--------	-----	------

Alt, S,S Open MCU start Up self-tests dialog box.

Function is used for changing the state of the EEPROM selectable tests in **MCU Start Up Self-tests** dialog.

<u>[</u> ests:	- Status	OK
PM Validity On	. <u>⊙ 0</u> n	Cancel
A/D Converter: On	© 0f <u>f</u>	<u>H</u> elp

Dialog mode: modal

MCU Start Up Self-tests dialog has following items:

Tests list box (ALT+T):

When dialog is opened, the previous values will be read from the MCU EEPROM and shown on the list box.

Status group:

When radio button **On** is selected, the test will be run every time when automatic start up self-tests are activated (e.g. in power up).

Save button (ENTER)

Selections are accepted and saved to EEPROM. A power up routine is made to phone.

Cancel button (ESC)

Selections are ignored and control is returned back to main menu.

Selectable Start-Up self tests:

PPM Validity

A/D Converter

Set Factory Values... command

|--|

Alt, S,V Set factory values

With this selection user can set factory defaults to phone. This selection opens **Default Factory values** dialog.

Dialog mode: modal

Default Factory Values dialog has following items:

Settings list box:

Contains the selectable factory values.

Set button:

Sets the selected factory value to phone. Before setting software asks confirmation:

Default Factory valu	ies 🛛 🔀
Set selected Are you sure	d default values to phone. e?
Yes	<u>N</u> o

Cancel button:

Closes the Default Factory Values dialog.

Available Settings:

User Interface, Short Code Memory, All (UI, SCM and call counters)

PAMS Technical Documentation

Phone <u>I</u>dentity... command

Activation Status Bar Text

Alt, S,I Open Phone Identity dialog box for editing

Function is used to edit phone identity. **NOTE:** product code cannot be changed with this dialog, if product code is invalid, e.g. after EEPROM change, change product code first with **Production Data Edit**. With this dialog IMEI or SIM locks may be changed in following manner:

current phone information is read from phone

user edits User Name (and IMEI and Product Code, if they were not read correctly from phone. But if you have to change product code it must be done in the Production Data edit dialog. To edit other fields than User Name and IMEI, Input entries from FAX must be checked)

dialog information is saved to file, which is sent to secure place where actual programming information may be constructed

programming information is received from secure place in an other file, which is loaded to dialog

program checks input values and if they are correct programming information is written to phone (Input values are compared with values read from phone)

Function opens Phone Identity dialog.

Dialog mode: modal

Phone Identity dialog has following items:

User Name edit box (ALT+U):

Field where user can enter user identification.

IMEI edit box (ALT+I):

Field where user can enter IMEI value. Field can contain up to 40 digits. This field is automatically filled, if ME is connected to the PC when dialog is loaded.

Product Code edit box (ALT+P):

Field where user can enter Product Code value. This field is automatically filled, if ME is connected to the PC when dialog is loaded. NOTE: Product code cannot be changed with this dialog, if product code is invalid, e.g. after EEPROM change, change product code first with Production Data Edit command.

PAMS Technical Documentation

Phone Identity	×
Identification User Name:	Close
	<u>H</u> elp
IMEI: MS Id: 00100410018116 83CF96CDD68E017E8B85BE1AC7	<u>W</u> rite
Product <u>C</u> ode: <u>P</u> roduct Id: Do <u>n</u> gle serial nr:	<u>R</u> ead
Action Selection CIMEL C SIM Lock IMEI Data: 0	<u>S</u> ave File
C Both SIM Data:	
Input entries for <u>F</u> AX	
Programming Data	
IMEI Programming Data:	
SIM Lock Programming <u>D</u> ata:	

MS Id edit box (ALT+M):

Field where user can enter MS Id corresponding programming data. This field is automatically filled, if ME is connected to the PC when dialog is loaded.

Product Id edit box (ALT+R):

Field where user can enter Product Id. This field is automatically filled, if ME is connected to the PC when dialog is loaded.

Dongle Serial nr. edit box (ALT+N):

Field where user can enter Product Id. This field is automatically filled, if ME is connected to the PC when dialog is loaded.

IMEI Data edit box:

Field where user can enter IMEI Data entry. This field is automatically filled, when file is loaded or data is saved.

SIM Data edit box:

Field where user can enter SIM Data entry. This field is automatically filled, when file is loaded or data is saved.

IMEI radio button:

File and ME operations contains only IMEI data.

SIM Lock radio button:

File and ME operations contains only SIM Lock data.

BOTH radio button:

File and ME operations contains both SIM Lock and IMEI data.

IMEI Programming Data edit box (ALT+I):

IMEI programming data is read from file or entered by user to this field.

SIM Lock Programming Data edit box (ALT+D):

SIM Lock programming data is read from file or entered by user to this field.

Input entries for FAX check box (ALT+F):

When checked all fields become editable to allow user to enter values by hand e.g. from FAX.

Close button (ESC):

Cancels all edits and does not save values to phone.

Help button

Opens a help text.

Write button (ALT+W):

Writes programming data to phone. Actions are selected with Action Selection radio button.

Read button (ALT+R):

Reads identification data from phone and shows it in dialog controls. Needed data is selected by Action Selection radio button.

Save File... button (ALT+S):

Writes a file containing data needed by security place application to create needed programming data. File is selected with File Save As dialog.

Load File... button (ALT+L):

Reads a file containing data needed to program selected data. File is selected with File Open dialog.

NOKIA

PAMS Technical Documentation

Warranty State... command

Alt, S,W Open Warranty State dialog box

This command is used to set the warranty state of a phone. When selected application opens **Warranty State** dialog box.

Warranty State	×
State: USE <u>R</u> epair Date (MMYY): 0000 ₩arranty Date (MMYY):	OK Cancel <u>H</u> elp

Dialog mode: modal

Warranty State dialog has the following items:

State static text:

USE For normal phones.

DEFECTIVE

For phones which are being swapped. A warranty and other information is transferred to the working phone.

EXCHANGE

For phones which are already repaired from **DEFECTIVE** one.

Repair Date edit box:

When Warranty State is **USE** user can edit repair date. Otherwise field is read only. Format is MMYY, where MM stands for month digits and YY stands for year digits.

Warranty Date edit box:

When state is **DEFECTIVE** user can edit warranty date. When warranty date is saved warranty state will be **EXCHANGE**. Format is MMYY, where MM stands for month digits and YY stands for year digits.

OK button (ENTER):

Closes the dialog box and saves the edited date to the phone. This button is enabled only when phone is Repair Date or Warranty Date is changed.

Cancel button (ESC):

Closes the dialog box and does not save the warranty state to the phone.
Production Data Edit... command

Alt, S,P Open Production Data Edit dialog box

This command is used for programming HW version and other production data to phone. Only fields that are editable are validated and written to phone. Function opens the following **Production Data Edit** dialog box.

Product Code:	0503440	Save
<u>)</u> rder Number:	2222222	<u>C</u> ancel
Production Ser. <u>N</u> o:	032012596	<u>H</u> elp
<u>M</u> anufacture Month:	1099	
H <u>W</u> version:	5220	
Basic Product Code:	0503440	

Dialog mode: modal

Production Data dialog has the following items:

Production Code edit box:

User can edit production code.

Order Number edit box (read only):

Displays order number. Order number "??????" is accepted, but not written to phone.

Production Ser. No edit box (read only):

Displays production serial number.

Manufacture Month edit box (read only):

Displays manufacturing month.

HW Version edit box:

User can edit HW version.

OK button (ENTER):

Closes the dialog box and writes HW version to ME.

Cancel button (ESC):

Closes the dialog box and does not write HW version to ME.

<u>D</u>ealer

The dealer sub menu offers functions for ME settings for dealers.

User Settings... command

Activation Status Bar Text

Alt, D,U Open User Setting dialog box

User Settings and Values 🛛 🛛		
?	Read user settings and values from ph	none?
	Yes No	

This command is used to edit some user settings. When this command is selected user is asked to read settings from the phone. After answering that dialog following **User Set-tings and Values** dialog is displayed.

User Settings and Values	×
Convite ID: 12245	OK
3 <u>c</u> omy ib. 12343	Cancel
Wake up <u>Message</u> Hello!	<u>H</u> elp
Sting.	<u>S</u> ave File
Wake up Message Graphics :	Load File
	E <u>d</u> it

PAMS Technical Documentation

Dialog mode: modal

User Settings dialog box has following items:

Security ID edit box:

User can change security code in ME.

Preview picture:

Shows graphical Wake up message. This picture is not available, if phone does not support WUG.

Wake up Message Graphics edit box (read only):

Shows name of file picture file loaded. This picture is not available, if phone does not support WUG.

Save File... button (ALT+S):

User can save user settings to file.

Load File button (ALT+L):

User can load user settings from file.

Edit... button (ALT+D):

Start Windows Paintbrush to edit loaded or saved graphical Wake up message. This picture is not available, if phone does not support WUG.

OK button (ENTER):

Writes user settings to phone.

Cancel button (ESC):

Closes the dialog box

Short Code Memory... command

Activation Status Bar Text

Alt, S,C Open Edit SCM dialog box.

This command is used for reading, storing and modifying the SIM/ME SCM values. Before dialog is opened number of memory places is read from phone. If phone does not have SCM in ME Memory selection is disabled and SIM is used as default. If SIM is selected

user may be asked to insert PIN and/or wait for SIM to wake up.

Edit SCM				
Editen Loc: 1	try: N <u>a</u> me:	<u>N</u> umber:	<u>G</u> roup: 255	Memory C SIM © MS
S <u>C</u> M: Loc:	Name :	Number:	Group :	<u>W</u> rite MS
1:			255 🔺	<u>R</u> ead MS
2:			255	-
3:			255	Save File
4:			255	
5:			255	Load File
6:			255	
7:			255	Cancel
8:			255	
9:			255	Help
10:			255	
11:			255	
12:			255	
13:			255	
14:			255	
15:			255	
16:			255	
17:			255 💌	

Function opens the following Edit SCM dialog:

Dialog mode: modal

Edit SCM dialog has the following items:

Loc static text:

Displays current location.

Name edit box (ALT+A):

Edit the Name.

Number edit box (ALT+N):

Edit the Number.

Group edit box:

Edit the Group number.

SCM list box (ALT+C):

List for available names and numbers.

Write MS / Write SIM button (ALT+W):

Write SCM values to phone or SIM and checks the validity of names and numbers.

Read MS / Read SIM button (ALT+R):

Read SCM values from phone or SIM.

Save File... button (ALT+S):

Opens a default Windows File Save As dialog and asks filename where to save SCM values.

Load File... button (ALT+L):

Opens a default Windows **File Open** dialog and asks filename where from load SCM values. Checks the validity of names and numbers.

Memory group box:

When memory is selected **SCM** list box size is adjusted to correspond memory size. Adjusting is done either adding empty entries to the end or removing entries from the list box.

SIM radio button:

Selects dialog to edit SIM memory. NOTE: PIN code must be set before editing SIM. During SIM selection user may be asked to insert PIN code and/or wait for SIM to wake up.

MS radio button:

Selects dialog to edit phone memory. This is default when dialog is opened.

When all values are sent and responses received, waiting window is removed and **Edit SCM** is back in control. The waiting state can be broken with **Cancel** (ESC) button. If writing to the ME is broken, only part of the SCM entries in the ME may be changed.

SCM & User Settings... command

Activation Status Bar Text

Alt, D,M Open SCM & User settings dialog box.

This command is used to get SCM and user settings from phone to file and vice versa. Following information is loaded/saved with this dialog: all user settings, graphical/text wake up message, SCM, alarms, calendar items and CLI logos and groups. Only values of supported features are saved or loaded. Also SCM in SIM is not saved or loaded.

When data is written or read phone waiting dialog is showed to user.

CM & User Settings	
	Close
<u>F</u> ile Name:	Write Phone
c:\temn\sakari.suc	<u>R</u> ead Phone
	<u>S</u> elect File
	<u>H</u> elp

Dialog mode: modal

SCM & User Settings dialog box has following items:

File Name edit field (ALT+F):

User can edit file name or select file with Open File dialog. When dialog is opened, it contains name of the previously saved or loaded file.

Write Phone button (ALT+W):

Loads settings from file and writes them to phone.

Read Phone button (ALT+R):

Reads settings from phone and writes them to file.

Select File button (ALT+S):

Opens Open File dialog, with which user can select the file, that contains the data to be loaded to ME or file to which data is saved from ME. If user selects OK button, the name of selected file is copied to File Name edit field.

Close button (ESC):

Closes the dialog box.

Restore User Defaults... command

Activation Status Bar Text

Alt, D,R Open Restore Default User Settings.

This command is used to restore Default User Settings, if they have degenerated. Dialog may be opened from menu, or is opened automatically, when loading or saving user settings fails or is skipped during flashing (see Flash Phone... command). The dialog is also opened after full factory set.

Default settings are loaded from files in product specific subdirectory of WinTesla directory e.g. for NSM-X this directory could be c:\wintesla\nsm-X. Into these directories user should unpack all flash packages. Market areas and corresponding files are described in INI-file in product specific subdirectory e.g. for NSM-X this file would be c:\wintesla\nsm-X\nsm-X.ini. INI-file is common to all flash packages, but market areas are added to Market Area list, when new flash packages are unpacked to product specific subdirectory.

Selecting Restore User Defaults opens following Restore Default User Settings dialog.

Restore Default User Settings	×
Default Settings	ОК
☑ <u>C</u> LI Logos	Cancel
✓ Product Profiles	<u>H</u> elp
□ <u>U</u> ser Settings	
Derator Logo	
Dealer Welcome Note	
□ <u>V</u> oice Mailbox	
GMS Logos	
- Market Area	

NOTE: This is a screen example. Actually enabled settings may differ.

Dialog mode: modal

Restore Default User Settings dialog box has following items:

Default Settings static text:

User can check one or more check boxes to restore corresponding defaults from file to ME. Check boxes are disabled/enabled according to settings available in selected

Market Area.

<u>Graphical Welcome Message check box (ALT+G):</u>

When checked user selects to restore default graphical welcome message.

<u>CLI Logos check box (ALT+C):</u>

When checked user selects to restore default CLI logos.

Product Profiles check box (ALT+P):

When checked user selects to restore default product profiles.

User Settings check box (ALT+U):

When checked user selects to restore default user settings.

Operator Logo check box (ALT+0):

When checked user selects to restore default operator logo.

Dealer Welcome Note check box (ALT+D):

When checked user selects to restore default dealer welcome note.

Voice Mail box check box (ALT+V):

When checked user selects to restore default voice mailbox number.

Market Area drop list (ALT+M):

User selects market area of the phone.

Write Phone button (ALT+W):

Loads settings from files and writes them to phone.

Close button (ESC):

Closes the dialog box.

Set UI/DEV Default Values... command

Activation Status Bar Text

Alt, D,V Reset phone to UI and SCM factory settings

After selection application asks confirmation: "Are you sure you want to set UI/DEV to factory settings?". If Yes is answered, default settings are re-setted to phone.

Operators Settings... command

Activation	Status Bar Text

Alt, D,0 Open Operator Settings dialog.

This command is used to set operator settings This selection opens following Operator Settings dialog.

Operator Settings		×
Settings		<u>S</u> ave
<u>C</u> ountry Code:	0000	<u>R</u> eset
Network Code:	00	Cancel
Operator Name:		
		<u>H</u> elp

Dialog mode: modal

Operator Settings dialog box has following items:

Settings group:

Country Code edit box (ALT+C):

User can edit country code (3 or 4 digits).

Network Code edit box (ALT+N):

User can edit network code (2 digits).

Operator Name edit box (ALT+O):

User can edit operator name (10 characters).

Save button (ENTER, ALT+S):

Saves settings to phone and closes dialog.

Reset button (ALT+R):

Clears operator settings form phone and closes dialog.

Cancel button (ESC):

Closes the dialog box and do not save settings to phone.

NOKIA

PAMS Technical Documentation

IWR Swap... command

Alt, D,I Open IWR Swap dialog.

This command is used to swap serial numbers of two phones. This selection opens following **IWR Swap** dialog.

Swap Data		×
<u>O</u> riginal SN:		ОК
Swapped SN:		Cancel
<u>5</u> #apped 514.		Help
<u>C</u> lub Nokia ID:		
Date:	3 February 2000	
Status: Press	'OK' to read the Origina	I SN

Dialog mode: modal

IWR Swap dialog box has following items:

Original SN: edit box (ALT+O):

Edit box where the original serial number is shown

Swapped SN: edit box (ALT+S):

Edit box where the swapped serial number is shown

Club Nokia ID: edit box (ALT+C):

Edit box where the Club Nokia ID is shown

Flash Phone... command

Activation	Status Bar Text
/ Clivation	Julus Dur Text

Alt, D,F Open Flash Phone dialog box.

This command is used for flashing new software into the phone. When flashing dead phone, user may be asked to select phone type. If more than one phone is flashed without closing dialog, then user **must press Check** button after phone has been changed.

Selection opens the following **Flash Phone** dialog box. When flashing is started, waiting windows is showed telling the user estimated flashing time. Flashing files are delivered in product and market area specific flash packages. These packages should be unpacked to product specific subdirectory of WinTesla directory e.g. *C:\WINTESLA\NSM-X* for NSM-X flash. This directory will then contain product specific INI-file e.g. NSM-X.INI in which different market areas and files are described.

lash Phone		>
<u>M</u> arket Area	Fla	sh
America (A)		
MCU Image File		se
C:\WINTESLA\NSB-7\NSB7 53.010	<u>H</u> e	lp
	Erasure Options	
PPM File:	<u> </u>	
C:\WINTESLA\NSB-7\NSB7_53.01A	Low limit: 200000	
Version in File:	High limit: 3CFFFF	
V 53.01 29-11-99 NSB-7 (c) NMP.A		_
Version in ME:		
V 52.10 11-10-99 NSB-7 (c) NMP.		
Package Versions:	FPS4 Uptions	
LPCS:V080598	Force Download	
GSMC: V080598	- BOM Marsian	
FONT: fconv		ack
TEXT:D041199	Roms	CUK
TONE:version		
PLMN: V9.00	LPT Port: 1	-

NOTE: This is a screen sample, actual information may differ.

Dialog mode: modal

Flash Phone dialog box has following items:

Market Area group:

Drop down list box (ALT+M):

User can select correct market area for phone. With this selection correct image and PPM files are loaded to edit fields. Usually this is the correct way to select files to be flashed.

MCU Image File group:

Edit field (read only):

Displays path of image file to be flashed.

...button:

Opens Open File dialog, with which user can select an image file to be flashed to ME. If user selects OK button, the name of selected file is copied to Flash Image edit field. Usually you should use Market Area list box to select Image file.

PPM group:

Edit field (read only):

Displays path of PPM package file to be flashed.

...button:

Opens Open File dialog, with which user can select a PPM package file to be flashed to ME. If user selects OK button, the name of selected file is copied to PPM Image edit field. Usually you should use Market Area list box to select PPM file.

Version in File edit field (read only):

MCU SW version string of the PPM package.

Package Versions edit field (read only):

Lists the file versions of PPM package.

Flash button (ALT+F):

Starts flashing selected files to phone. Before flashing asks, does user want to save all user settings to file (and load them after flashing). If reading user settings to ME or writing them to ME failed, Restore Default User Settings dialog is opened and user can restore default settings to phone.

NOTE: If settings are saved but flashing fails or for some other reason setting are not loaded back to phone, the saved settings can be loaded phone later. When settings are saved they are also copied to files which names are generated from phone PSN.

If settings are not loaded back to phone after flashing those files are left and found by application when phone is flashed next time. After successful loading to phone files are removed.

Close button (ESC):

Closes the dialog box and does not start flashing.

Erasure Options group:

Erase Defined Area check box:

If it is checked, prommer erases from phone EEPROM area defined with **Low limit** and **High limit** fields. If it is not checked only new blocks are erased from phone EEPROM. If values in fields are not valid, then check box is disabled. Check box state is read from flash pack ini-file, from entry **EraseDefinedArea**.

Low limit edit box (read only):

Hexadecimal value defining low erase limit, value should be plain hexadecimal without any prefix. Field value is read from flash pack ini-file, from entry **LowEraseLimit**.

High limit edit box (read only):

Hexadecimal value defining high erase limit, value should be plain hexadecimal without any prefix. Field value is read from flash pack ini-file, from entry **HighEraseLimit**.

Force Download check box (ALT+D):

Forces downloading of selected PPM file to a prommer even, if it already exists there. Can be used to replace a corrupted file in a prommer with a proper one.

ROM Version Group:

ROM Version edit box:

Shows rom version of flashed phone.

Check button (Alt+A):

Checks connected phone, reads MCU SW and ROM version from the phone and loads market areas. If application cannot detect **ROM version**, user is shown ROM Version selection dialog. If application cannot detect phone type, user is shown **Phone Type Selection** dialog.

LPT Port list box (ALT+L):

User can select parallel port to be used when flashed.

During flashing status dialog is showed. After phone is flashed current time in PC is set to phone and user is asked to check that the time is correct. If flashing succeeded "Flashing completed!" message is shown to user, if flashing failed "Flashing failed" message is shown instead.

After flashing phone several self-test are checked or run. If some of those fail, then Flash Id, factory sets or user settings are not written to phone. For example if SW Version fails, then MCU SW version does not match phone HW and user should flash MCU SW and PPM for correct ROM version.

Phone Type Selection dialog

OK
Cancel
Halp
<u> </u>

NOTE: This is a screen sample, actual information may differ.

Dialog mode: modal.

Phone Type Selection dialog has following items:

Phone Type group:

List box:

User can select phone type.

OK button (ENTER):

User accepts selected phone type.

Cancel button (ESC):

Phone type selection is cancelled and operation is aborted.

ROM Version dialog

ROM Version	×
Select ROM version:	OK
1 ROM4 2 ROM3 3 ROM2	Cancel
4 RAM 5 ROM5	<u>H</u> elp
6 ROM6 7 NOT USED	

NOTE: This is a screen sample, actual information may differ.

Dialog mode: modal

ROM Version dialog has following items:

Select ROM version group:

List box:

User can select ROM version of phone.

OK button (ENTER):

User accepts selected ROM version.

Cancel button (ESC):

ROM version selection is cancelled and operation is aborted.

NOKIA

PAMS Technical Documentation

<u>V</u>iew

Quick/RF Info... command

Activation Status Bar Text

Alt, V,Q View Quick/RF information.

If phone is in normal mode following **Quick Info** is shown:

Quick Info _ 🗆 X Phone Mode: NORMAL Phone Version: V 52.10 11-10-99 NSB-7 (c) NMP. Serial Number: 001004/10/018116/4 SIM Lock Settings: Index: 1 SimLock Status Type Counter Data Ll Open Factory O Mcc+Mnc 10100 Open Factory O Open Factory O Open Factory O L2 Gidl 0000 L3 Gid2 0000 L4 Msin 0000000000 Index: 2 SimLock Status Type Counter Data Closed Factory Mcc+Mnc 00101 Ll 0 Gidl 0000 L2 Open Factory 0 Gid2 0000 L3 Open Factory 0 Open Msin 0000000001 L4Factory 0 Close Help

Dialog mode: modeless

If phone is in local mode following **RF Information** is shown. Information is shown in a modeless dialog which may be left open during other operations. It is also updated when

ever needed.

Active Unit: PX TX Power Level: (Off) Operation Mode: Burst TX Data Type Contl Cont. Mode Channel: 661 1960.000000 Channel	_ 🗆 >
TX Power Level: (Off) Operation Mode: Burst TX Data Type: Contl Cont. Mode Channel: 661 1960.000000 Channel: 661 1960.000000 Monitoring Channel: 512 1930.200000 AFC: 0 AGC Absolute Value: 8 AGC: 0n	
Operation Mode: Burst TX Data Type: Contl Cont. Mode Channel: 661 1960.000000 Channel: 661 1960.000000 Monitoring Channel: 512 1930.200000 AFC: 0 AGC Absolute Value: 8 AGC: 81 dB Front End: On	
TX Data Type: Contl Cont. Mode Channel: 661 1960.000000 Channel 661 1960.000000 Monitoring Channel: 512 1930.200000 AFC 0 AGC Absolute Value: 8 AGC 81 dB Front End 0n Help	
Cont. Mode Channel: 661 1960.000000 Channel 661 1960.000000 Monitoring Channel: 512 1930.200000 AFC 0 AGC Absolute Value: 8 AGC 81 dB Front End 0n	
Channel: 661 1960.000000 Monitoring Channel: 512 1930.200000 AFC: 0 AGC Absolute Value: 8 AGC: 81 dB Front End: 0n	
Monitoring Channel: 512 1930.200000 AFC 0 AGC Absolute Value: 8 AGC 81 dB Front End 0n	
AFC 0 AGC Absolute Value: 8 AGC 81 dB Front End 0n	
AGC Absolute Value: 8 AGC 81 dB Front End 0n	
AGC 81 dB Front End 0n	
Front End On	
Class	

Dialog mode: modeless

Selections show what data is currently updated by PC.

NOKIA

PAMS Technical Documentation

Phone Information... command

Activation	Status	Bar	Text

Alt, V,P View Phone Identity.

Command opens **Phone Identity Information** dialog, which shows identification information. Information is shown in a modeless dialog which may be left open during other operations. It is also updated when ever needed.

MCU SN	V 52.10 11-10-99 NSB-7 (c) NMP.
MCU SW Checksum	B924
PPM Version	V 52.10 11-10-99 NSB-7 (c) NMP.
PPM Package Version	Δ
DSP Internal SW	5
DSP External SW	P20.5.706 08-Oct-99 NSB-6 (c) NM1
Svstem ASIC	G-03
COBBA	=31
Serial Number	001004/10/018116/4
HW	5220
Original Serial Number:	001004100181164
Production Serial Number:	032012596
Manufactured (MM YY)	1099
Purchase (MM YY)	- Warranty not available
Order Number	2222222
Product Code	0503440
PCI Version in Phone:	5042
Basic Production Code:	0503440

Dialog mode: modeless

Initialization file

The After Sales Software has an initialisation file which has extension .INI. Initialisation file is TESLA.INI which includes all next selections (on mentioned menus or dialogs) and parameters:

Common Settings:

[STARTUP] Mode=0 // 0 = normal mode, 1 = local mode, 2 = do nothing RF Controls dialog Active Unit (Active Unit=) TX Power Level (TX Power Level=) Operation Mode (Operation Mode=) TX Data Type (TX Data Type=) Continuous Mode Channel (Cont Mode Channel=) Channel (Channel=) Monitoring Channel 1 (Monitoring Channel=) AGC dB value (AGC=)

AGC Absolute Value (AGCAbsolute=) Front End (FrontEnd=)

Call Simulation dialog

Monitoring Channel 2 (Monitoring Channel 2 =)

Monitoring Channel 3 (Monitoring Channel 3 =)

Monitoring Channel 4 (Monitoring Channel 4 =)

Monitoring Channel 5 (Monitoring Channel 5 =)

Monitoring Channel 6 (Monitoring Channel 6 =)

All selections and parameters which are not same as in the RF Controls menu.

TX Power Tuning dialog ([TX Power Tuning])

TX power coefficients

TX I/Q Tuning dialog ([TX I/Q Tuning])

TX I/Q

Tuning Instructions

General

All tuning operations are carried out using the service software. The service software turns the phone into the locals mode, in which the phone can be outwardly controlled via the MBUS interface.

Tuning is based on the software communicating with the D/A and A/D converters of the phone. In some instances the phone processor will also calculate the required correction parameter.

The tuning values of the phone reside on the EEPROM. The contents of the EEPROM can be read by the service software and saved as a file. This is advisable when there is need to retain that information, e.g. in view of replacement of the circuit. The program also enables writing the default parameters on the EEPROM, in which case all tuning steps should be carried out.

During tuning, proceed as follows:

- Take care not to damage sensitive measuring instruments with excessive RF power.
- Carry out all tuning steps in the shortest possible time to avoid excessive heating of RF units.
- Perform all tuning steps in the order presented.
- Never try to mask a fault by tuning it out!

Required Equipment

PC with service software; see separate section for instructions on installation and use.

Service accessories; see equipment setup pictures.

Multimeter or DVM.

GSM radio telephone test station or separate measuring equipment as follows:

- RF generator
- pulse power meter
- spectrum analyzer
- attenuator and branching unit

Equipment Setup

- Caution: Make sure that you have switched off the PC and the printer before making connections !
- Caution: Do not connect the PKD-1 key to the serial port. You may damage your PKD-1 !

Attach the protection key PKD-1 to parallel port one (25-pin female D-connector) of the PC. When connecting the PKD-1 to the parallel port be sure that you insert the PC end of the PKD-1 to the PC (male side). If you use a printer on parallel port one, place the PKD-1 between the PC and your printer cable.

Next connect the M2BUS service cable, DAU-9S, to the serial port (RS-232) of the computer. Attach one end of the service cable to the PC serial port and the other end to the service box, JBU-6. For servicing the phone with the covers in place the service box should always be used.

When the phone covers are removed the jigs should be used.

Equipment Setup for Calibration and Tuning with RA5

Figure 1: Equipment Setup for Calibration and Tuning

ltem:	Service Accessory:	Product Code:
1	Service Box JBU-6	0770153
2	RF Module RA5 for JBU-6	0201591
3	DC Power Cable PCS-1	0730012
4	Service MBUS Cable DAU-9S	0730108
5	Software Protection Key PKD-1	0750018
6	Service SW diskette 3.5" for NSB-7 Flash SW packages on CD	0774080 0775227
7	RF Cable XRS-3	0730184

Equipment Setup for Testing Audio & Charging

Figure 2: Equipment Setup for Testing Audio & Charging

ltem:	Service Accessory:	Product Code:
1	Service Box JBU-6	0770153
2	DC Power Cable PCS-1	0730012
3	Service MBUS Cable DAU-9S	0730108
4	DC-DC Cable SCB-3	0730114
5	Software Protection Key PKD-1	0750018
6	Service SW diskette 3.5" for NSB-7 Flash SW packages on CD	0774080 0775227
7	Audio Box JBA-6	0770184
8	Audio Cable ADS-3	0730197

PAMS Technical Documentation

Flash Concept with JBU-6

Figure 3: Flash Concept with JBU-6

ltem:	Service Accessory:	Product Code:
1	Service Box JBU-6	0770153
2	*Flash Loading Adapter FLA-5	0080178
3	Flash Security Box TDF-4 IR Module JLP-1 for TDF-4	0770106 0750079
4	Flash Prommer FPS-4S	0085095
5	DC Power Cable PCS-1 for JBU-6	0730012
6	Service Cable XMS-3	0730174
7	D15-D15 Cable AXS-5	0730091
8	Printer Cable (Included in FPS-4 Sales Pack)	0730029
9A	D9-D9 Cable AXS-4 (Included in FPS-4 Sales Pack)	0730090
9B	D9-D9 Cable AXS-4U	0730163
10	DC Cable PCC-1	0730053
11	Software Protection Key PKD-1	0750018
12	Service SW diskette 3.5" for NSB-7	0774080
13	Travel Charger ACH-6U (USA/Japan)	0675085
14	AC Charger ACL-3E (Included in FPS 4 Sales Pack)	0680015
15	DC-DC Cable SCB-3	0730114

*FLA-7 can be used (see Flashing with FLA-10 for FLA-7 setup).

Testing Without Covers - Using Test-frame MJS-9

Figure 4: Testing Without Covers- Using Test-Frame MJS-9

Item:	Service Accessory:	Product Code:
1	Module Jig MJS-9*	0770154
2	Service MBUS Cable DAU-9S	0730108
3	ACP-8 Travel Charger (see code: General Information Chapter)	
4	RF Antenna Cable XRF-1	0730085
5	DC Power Cable PCS-1	0730012
6	Software Protection Key PKD-1	0750018
7	Service SW diskette 3.5" for NSB-7 Flash SW packages on CD	0774080 0775227
8	LCD CD9	0770244

*) The nominal operating voltage for MJS-9 is 8.0 V. The supply voltage for MJS-9 must never exceed 15.0 V PAMS Technical Documentation

Flashing With FLA-10

Figure 5: Flashing With FLA-10

ltem:	Service Accessory:	Product Code:
1	Service Flash Adapter FLA-10	0081346
2	*Flash Loading Adapter FLA-7	0080326
3	Flash Security Box TDF-4 IR Module JLP-1 for TDF-4	0770106 0750079
4	Flash prommer FPS-4S	0085095
5	D15-D15 Cable AXS-5	0730091
6	Printer Cable (Included in FPS-4 Sales Pack)	0730029
7A	D9-D9 Cable AXS-4 (Included in FPS-4 Sales Pack)	0730090
7B	D9-D9 Cable AXS-4U	0730163
8	Service Cable XCM-5	0730142
9	Software Protection Key PKD-1	0750018
10	Service SW diskette 3.5" for NSB-7	0774080
11	Travel Charger ACH-6U (USA/Japan)	0675085
12	AC Charger ACL-3E (Included in FPS 4 Sales Pack)	0680015
13	Service Cable XMS-3	0730174
14	DC Power Cable PCS-1	0730012
15	Power Cable SCF-7	0730141

* FLA-5 can also be used (see Flash Concept with JBU-6 for FLA-5 setup).

POS Flash Concept with FLA-10

Figure 6: POS Flash Concept with FLA-10

Item:	Service Accessory:	Product Code:
1	Flash Loading Adapter FLA-10	0081346
2	Service Cable XMS-3	0730174
3	Travel Charger ACP-8 (see code: General Information Chapter)	
4	D9-D9 Cable AXS-4U	0730163
5	POS Flash Adapter FLS-2D (USA)	0081309
6	Service SW diskette 3.5" for NSB-7 Flash SW packages on CD	0774080 0775227

Warranty Transfer

Figure 7: Warranty Transfer

Item:	Service Accessory:	Product Code:
1	Flash Loading Adapter FLA-10	0081346
2	Service Cable XMS-3	0730174
3	DC Power Cable PCS-1	0730012

Tuning Steps

1. Coupler Module RA5 Attenuation Measurements

Every coupler has its own individual attenuation values in different channels and therefore it is important to use accurate attenuation values to ensure the reliable results of tuning and testing.

Coupler module RA5 has to be calibrated in next cases:

- When coupler is taking into use the first time
- When RF cable or attenuator is changed

Calibration should be done once a week and has been recommended to calibrate coupler always when module is removed from JBU-6 service box and placed back.

Pay attention to the following instructions in calibration:

- Keep JBU-6 box in the same place on the table during measurements
- Close the cover of JBU-6 box carefully
- Do not touch to JBU-6 box during measurements
- Take care that cables aren't lying above cover

Calibration procedure step by step:

- 1 Insert coupler module RA5 to its place properly.
- 2 Connect cables for JBU-6 box and measuring devices carefully. Check that DC SUPPLY MODE has been switched to FLA-5 in JBU-6.
- 3 Insert golden phone in the JBU-6 box.
- 4 Adjust DC power supply voltage to 9V. Switch power on.
- 5 Close the cover of the JBU-6 box and start WinTesla.
- Choose "Product" -> "open" -> "NSB-7" -> "OK"

In the case of RX calibration:

- Choose from Menu bar "Testing" and then "RF controls"
- Ensure that settings are as follows:

Activate Unit: RX

Operation Mode: Burst

Channel: 661

- Press "Apply" and close window
- Set RF generator to correct frequency 1960.067710 MHz and level -55.0 dBm + cable attenuation (if cable attenuation is 0.5 dB, then level is -54.5 dBm)
- Choose from Menu bar "Testing" and then "RSSI Reading". Write down the RSSI value. Close window.
- Coupler attenuation value = RX value of Golden phone RSSI value

In the case of TX calibration:

- Choose from Menu bar "Testing" and then "RF controls"
- Ensure that settings are as follows:

Activate Unit: TX

Operation Mode: Burst

TX Power level: 0

Channel: 661

- Press "Apply"
- Set Spectrum analyzer's settings as follows

Center frequency 1880 MHz

Res BW 10 MHz Max.

Video BW 10 MHz Max.

Span 0 Hz

Sweep time 2 ms

REF level 35 dBm

RF att. 40 dB

REF level offset (e.g. attenuator 10 dB + cable 0.5 dB) 10.5 dB

Set marker to point to a peak value

- Write down the TX power value of spectrum analyzer.
- Coupler attenuation value = TX value of Golden phone TX power value of spectrum analyzer

2. RX and TX Tuning with RA5

Calibration of the coupler has to be made before tuning. In tuning has to be used attenuation values got from calibration.

Tuning procedure step by step:

- 1 Insert coupler module RA5 to its place properly.
- 2 Connect cables for JBU-6 box and measuring devices carefully. Check that DC SUPPLY MODE has been switched to FLA-5 in JBU-6.
- 3 Insert phone in the JBU-6 box.
- 4 Adjust DC power supply to 9V. Switch power on.
- 5 Close the cover of the JBU-6 box and start WinTesla.

In the case of RX tuning:

- Choose from Menu bar "Tuning" and then "RX calibration"
- Set RF generator to frequency 1960.067710 MHz and high level -55.0 dBm + cable attenuation + coupler attenuation (if cable attenuation is 0.5 dB and coupler attenuation e.g. 4.5 dB then level is -50 dBm). Press OK.
- Set RF generator to frequency 1960.067710 MHz and low level -85.0 dBm + cable attenuation + coupler attenuation (if cable attenuation is 0.5 dB and coupler attenuation e.g. 4.5 dB then level is -80 dBm). Press OK.
- In next window press "save".

In the case of TX tuning:

- Choose from Menu bar "Tuning" and then "TX power"
- When "start tuning" window opens select "1 EEPROM values". Press OK.
- Set Spectrum analyzer's settings as follows:

Center frequency 1960 MHz

Res BW 10 MHz Max.

Video BW 10 MHz Max.

Span 0 Hz

Sweep time 2 ms

REF level 35 dBm

REF level offset (e.g. attenuator 10 dB + cable 0.5 dB + coupler attenuation e.g. 4 dB) 14.5 dB

Set marker to point a peak value

- Tune the phone at three power levels (0, 11, and 15) to the target values.
- Press "calculate" and then "save".

3. RX Filter Calibration

BB-filter tuning is fully internal operation. External signal generators etc. are not needed, only command for phone to execute filter calibration procedure.

Troubleshooting

If the calibration does not succeed the software normally reports "Unable to read data from phone" or "Failed to set high reference" or "Failed to set low reference".

In this case check first the basic functionality of the receiver chain: RF generator frequency set as in the calibration and level for example to the high reference value.

Then go to the RSSI reading menu (under RF controls). If the reading is very low there is something broken in the receiver and must be found by measuring voltages and signal levels at different places (information of these can be found in Disassembly & Trouble-shooting Chapter of this manual).

If the RSSI reading seems to be within 5 – 10 dB the same as the RF input level check that the VCTCXO frequency is close enough the wanted frequency. This is most easiest done by measuring VCO frequency in GSM1900 middle channel 661 (VCO frequency is be 3920 MHz). If the deviation is bigger than about \pm -50 kHz it is probable that the VCTCXO is not operating correctly.

If both of these (RSSI reading and the frequency) seem to be correct and calibration still fails the most probable reason is that there must be some missing gain step in Hagar or then the problem must be in COBBA.

4. AM suppression tuning

AM suppression calibration is for tuning four Hagar parameters to get as small RSSI value as possible.

For AM-suppression calibration external signal generator with AM-modulation is needed.

Signal generator setup: AM-modulation, fmod = 1 kHz, mod. depth = 83% f = ch(default)+10 MHz, P = -26 dBm (GSM 1900)

Test limits for AM-calibr. results: -86 dBm (GSM 1900)

NOTE! Base level **must** be adjusted manually because the calculation most often fails.

5. I/Q Modulator Alignments

See chapter "Service Software Instructions" and section "TX I/Q... command" for further information.

Procedure:

Connect the spectrum analyser to the service box JBU-6. The recommended spectrum analyser settings are: span 200 kHz, resolution BW 10 kHz, video BW 1 kHz, sweep 1 s, input attenuation 30 dB.

- From *RF controls* menu make sure that TX data type is 1.
- Go to *TX I/Q tuning menu*. The alignment channel for GSM 1900 is 661 (1880 MHz).
- Select the "TX I DC offset" option and adjust the level of the centre frequency

(CHF) to minimum.

- Select the "TX Q DC offset" option and adjust the level of the CHF again to minimum.
- After finding both minima change "TX I DC offset" by step or two from the current value to both directions to see, whether better minimum can be found for CHF.
- Select the "Amplitude Difference" option and adjust the level of the CHF +67.71 kHz again to minimum.
- After al the minima have been found press "Save" button to store the value to phone EEPROM.

Targets:

The level of the centre frequency CHF should be at least **30 dB** down to the wanted sideband CHF -67.71 kHz.

The level of the unwanted sideband CHF +67.71 kHz should be at least **35 dB** down to the wanted sideband CHF -67.71 kHz.

6. Energy Management Calibration

See section "Tuning - Energy Management Calibration... command" for further information.

Abbreviation Description ASIC Custom circuit which for instance controls communication between MCU and DSP JBU-6 Service box CLF Common Look and Feel CLI Calling Line Identification COBBA Common Base Band Analog DATA DATA interface module DAU-9S/P MBUS/FBUS cable DLL Dynamic Link Library DSP Digital Signal Processor which controls radio interface and speech coding/decoding EEPROM Memory for adjustment parameters (Electrically Erasable and Programmable Read Only Memory) FBUS Fast serial bus IMEI International Mobile Equipment Identification code IR Infra Red transmitter M2BUS Serial communication bus which can be connected to accessory devices and test PC MCU Master Control Unit processor MDI MCU DSP Interface; message interface via ASIC registers ME Mobile Equipment MODAL A modal dialog box requires the user to complete interaction (dialog box) within a dialog box, and close it before continuing with any further interaction outside the window. MODELESS A modeless dialog box allows the user to interact with other windows and applications. (dialog box)

Appendix 1, Vocabulary
NOKIA

PAMS Technical Documentation

MS	Mobile Station
PC	IBM PS/AT or compatible personal computer
PCI	Phone Controlling Interface SW for PC
PKD-1/1NS/1CS	Hardware protection key (DESKEY DK2) for protecting service software from illegal copying. The software will not work without this key !
RF	Radio Frequency parts
RTC	Real Time Clock
SW	Software
TDF-4	Flash security box
UI	User Interface

This Page Intentionally Blank

Programmes After Market Services NSB-7 Series Transceivers

Service Tools

Table of Contents

rice Tools	1
Service Box IBU-6	5
Product Code	5
RF Module RA5 for Service Box JBU-6	5
Test lin MIS-9	6
Product Code	6
Service Audio Box IBA-6	8
Product Code	8
IR Data Interface Module II P-1	C
Product Code	C
Soldering lig MIS-21	10
Product Code	10
Flash Loading Adapter FLA-10	11
Sales Package Code	
Batten/ Connector Extractor Tool SRT-3	12
Product Code	12
Flach Loading Adapter FLA_5 (Sales Pack)	
Sales Package Code	
Flach Loading Adapter FLA_7 (Sales Pack) Ontional	
Sales Paakage Code	۲۹ / ۱
Sales I ackaye Coue	۲4 ۱۴
Fidsh Fluinnich FFS-43 (Sales Fack)	
Sales Fackage Couc	
Dreduct Code	
Dy-Dy Caule AAS-40	/ 1 ⁻
	/ ۱
Dy-Dy Caole AAS-4	از ۱۵
	۱۵ ۱۵
DIS-DIS CADE AAS-5	
AUGIO CADIE ADS-3	2(
Product Lode	
Du Charging Cable PCC-T	
Du Cable SUB-3	22
	22
NIBUS CODE DAU-95	23
	24
DC Power Cable SCF-/	
Product Code	
KF Cable XKF-1	26
Product Code	
KF Cable XKS-3	27
Product Code	27
Service Cable XMS-3	

Product Code	28
SW Security Device PKD-1	29
Product Code	29
Dongle/Flash Device FLS-2D (Sales Pack)	30
Product Code	30

List of Figures

		Page No
Fig 1	View of Service Box JBU-6	5
Fig 2	View of RF Module RA5	5
Fig 3	View of Module Jig MJS-9	6
Fig 4	View of PCB module in MJS-9 Jig	7
Fig 5	View of Service Audio Box JBA-6	
Fig 6	View of IR Data Interface Module JLP-1	9
Fig 7	View of Soldering Jig MJS-21	
Fig 8	View of Flash Loading Adapter FLA-10	
Fig 9	View of FLC-2 Cable	
Fig 10	View of Battery Connector Extractor Tool SRT-3	
Fig 11	View of Flash Loading Adapter FLA-5	
Fig 12	View of Flash Loading Adapter FLA-7	
Fig 13	Veiw of Flash Prommer FPS-4S	
Fig 14	View of Security Box TDF-4	
Fig 15	View of D9-D9 Cable AXS-4U	
Fig 16	View of D9-D9 Cable AXS-4	
Fig 17	View of D15-D15 Cable AXS-5	
Fig 18	Veiw of Audio Cable ADS-3	
Fig 19	View of DC Charging Cable PCC-1	
Fig 20	View of DC Cable SCB-3	
Fig 21	View of MBUS Cable DAU-9S	
Fig 22	View of Power Cable PCS-1	
Fig 23	View of DC Power Cable SCF-7	
Fig 24	View of RF Cable XRF-1	
Fig 25	View of RF Cable XRS-3	
Fig 26	View of Service Cable XMS-3	
Fig 27	View of SW Security Device PKD-1	
Fig 28	View of Dongle/Flash Device FLS-2D	

Service Box JBU-6

The Service Box JBU-6 is used:

- to make connection between transceiver and FLA-5/FLA-7 for flashing
- to help functional tests
- to enable connection to test/measurement devices
- to generate accurate 4.1 and 8.4 voltage for Vbatt and Vin/Vchar lines
- to generate accurate 500mA current for charging calibration Vin line
- to generate 10 ms IBI-pulse to BTMP-line

NOTE: JBU-6 cover should be closed during measurements.

Product Code

Service Box JBU-6: SCD-6: Sales Package code: 0080329 Product Code: 9780263 Pinset Cable SCD-6: Spare part for JBU-6:

Figure 1: View of Service Box JBU-6

RF Module RA5 for Service Box JBU-6

RF Module RA5:

0201591

Figure 2: View of RF Module RA5

Test Jig MJS-9

The Test Jig MJS-9 is used for repair of system/RF module*. The zoom in picture contains two changeable over voltage protection components:

SM Fuse F2.0 A 32V 1206 F 001 T VWM 5.6V VC15.5 R 008 T See next page for additional info. 5119002 (larger of the two) 1825019

Product Code

Module Jig MJS-9:

0770154

Figure 3: View of Module Jig MJS-9

* Note: The nominal supply voltage for MJS-9 is +8.0 V. The supply voltage must not exceed + 15.0 V. (MJS-9 has over voltage protection). Use modified LCD CD9 module when servicing With MJS-9. Product Code: 0770244

Remove LCD/Keymat module from PCB before installing the radio module into the Service Jig MJS-9. Use LCD CD9 Module instead of the original NSB-7 module.

Figure 4: View of PCB module in MJS-9 Jig

Service Audio Box JBA-6

The Service Audio Box JBA-6 is used between the phone or and audio measuring equipment.

Product Code

Service Audio Box JBA-6

0770184

Figure 5: View of Service Audio Box JBA-6

IR Data Interface Module JLP-1

IR Data Interface Module JLP-1 fits in the Security Box TDF-4 and can be used to perform IR tests with Wintesla.

Product Code

IR Data Interface Module JLP-1

0750079

Figure 6: View of IR Data Interface Module JLP-1

Soldering Jig MJS-21

The Soldering Jig MJS-21 is used for soldering (in automatic soldering machines) and as a rework jig for the system module, if special fixings (like extra feet) are used.

Product Code

Figure 7: View of Soldering Jig MJS-21

NOKIA PAMS Technical Documentation

Flash Loading Adapter FLA-10

The Flash Loading Adapter FLA-10 is used in place of the phone's normal battery during service or flashing, to supply a controlled operating voltage.

Sales Package Code

Flash Loading Adapter FLA-10:	0081346
Sales package contains:	
Flash Loading Adapter FLA-10 (bulk) DC Cable FLC-2	0770229 0730185

Figure 8: View of Flash Loading Adapter FLA-10

Figure 9: View of FLC-2 Cable

Battery Connector Extractor Tool SRT-3

The Battery Connector Extractor Tool is used to remove the battery connector from the main frame.

0770226

Product Code

Battery Connector Extractor Tool SRT-3

Figure 10: View of Battery Connector Extractor Tool SRT-3

Flash Loading Adapter FLA-5 (Sales Pack)

The Flash Loading Adapter FLA-5 is used with the Flash Adapter FLA-10 and Service Cable XMS-3. Power is supplied to the FLA-5 from the Flash Security Box TDF-4 via the DC cable PCC-1B, (The PCC-1B cable can be replaced with a Travel Charger ACH-6), and is connected to the Flash Prommer FPS-4S with the cable AXS-5.

The sales pack includes:

- Flash Loading Adapter FLA-5	0770085
- Service Cable SCH-5	0730098
- D15 - D15 Cable AXS5	0730091
- Installation software for FPS-4	8400041

Sales Package Code

Flash Loading Adapter FLA-5

0080178

Figure 11: View of Flash Loading Adapter FLA-5

Flash Loading Adapter FLA-7 (Sales Pack) Optional

NOTE: If you already have FLA-5, FLA-7 is not needed. The Flash Loading Adapter FLA-7 is used with FLA-10 and Service Cable XMS-3. Power is supplied to FLA-7 from ACL-3 Charger and is transfered through Power Cable SCF-7 to Flash Prommer FPS-4S.

The sales pack includes:

0770119
0730142
0730141
0730091

*Note: Service Cable XMS-3 (0730174) is used with NSB-7

Sales Package Code

Flash Prommer FPS-4S (Sales Pack)

The Flash Prommer FPS-4S is used to update the main software of the phone. Updating is done by first loading the new MCU software from the PC to the flash prommer, and then loading the new SW from the prommer to the phone. When updating more than one phone in succession, the MCU software only needs to be loaded to the prommer once.

The sales pack includes:

- Flash Prommer FPS-4	0750090
- Charger ACL-3E	0680015
- Printer cable IBM DB25F/57-30360	0730029
- D9 - D9 Cable AXS-4	0730090
 Flash Prommer software 3" disk 	0774043

Sales Package Code

Flash Prommer FPS-4S:

Flash Prommer FPS-4S:

0085095

0081275 (US with ACL-3E removed)

Figure 13: Veiw of Flash Prommer FPS-4S

Security Box TDF-4

The Security Box TDF-4 is required for updating MCU software, and infra red testing.

Note 1:TDF-4 is delivered in de-activated mode. Fill in the enclosed Activation Request Form, and fax to NMP Salo to get the activation code

Note 2:The infra red module JLP-1 (P/N 0750079) is not included in the TDF-4 sales package.

Product Code

Figure 14: View of Security Box TDF-4

D9-D9 Cable AXS-4U

The D9-D9 cable AXS-4U is used to connect two 9 pin D connectors. e.g. between PC serial port and FLS-2D.

Product Code

D9-D9 Cable AXS-4U

0730163

Figure 15: View of D9-D9 Cable AXS-4U

D9-D9 Cable AXS-4

The D9-D9 cable AXS-4 is used to connect two 9 pin D connectors. e.g. between PC and TDF-4 security box.

Product Code

D9-D9 Cable AXS-4

0730090

Figure 16: View of D9-D9 Cable AXS-4

D15-D15 Cable AXS-5

The D15-D15 Cable AXS-5 is used to connect two 15 pin D connectors. e.g. between FLA-5/7 and FPS-4S.

Product Code

D15-D15 Cable AXS-5: 0730091

Figure 17: View of D15-D15 Cable AXS-5

Audio Cable ADS-3

The audio cable connects to the Audio box JBA-6.

Product Code

Figure 18: Veiw of Audio Cable ADS-3

NOKIA

PAMS Technical Documentation

DC Charging Cable PCC-1

The DC Cable PCC-1 is used e.g. to connect FLA-5/7 and TDF-4.

Product Code

DC Cable PCC-1 (with modular RJ connector): 0730053

Figure 19: View of DC Charging Cable PCC-1

DC Cable SCB-3

The DC Cable SCB-3 is used to connect the Service Battery to the charger connection Vin of the phone when doing the charger calibration service procedure.

Product Code

DC Cable SCB-3:

0730114

Figure 20: View of DC Cable SCB-3

MBUS Cable DAU-9S

The MBUS Cable DAU-9S has a modular connector, and is used with the service Audio Box JBA-4, or a modular T-adapter.

Product Code

MBUS Cable DAU-9S:

0730108

Figure 21: View of MBUS Cable DAU-9S

Power Cable PCS-1

The Power Cable PCS-1 is used to connect the module jigs JBT-1 and JBS-19 to an external power supply. Can be used with FPS-4 also.

Product Code

Power Cable PCS-1: 0730012

Figure 22: View of Power Cable PCS-1

DC Power Cable SCF-7

The DC Power Cable SCF-7 is used for connecting power from ACL-3 charger via FLA-7 to FPS-4.

Product Code

DC Power Cable SCF-7

0730141

Figure 23: View of DC Power Cable SCF-7

RF Cable XRF-1

RF cable XRF-1 is used to connect Test frame MJS-9 to RF measurement equipment.

Product Code

RF Cable XRF-1:

0730085

Figure 24: View of RF Cable XRF-1

RF Cable XRS-3

RF cable XRS-3 is used to connect Service Box JBU-6 to RF measurement equipment.

Product Code

RF Cable XRS-3:

0730184

Figure 25: View of RF Cable XRS-3

0730174

Service Cable XMS-3

XMS-3 is a modular cable for flashing.

Product Code

Service Cable XMS-3:

Figure 26: View of Service Cable XMS-3

SW Security Device PKD-1

SW security device is a piece of hardware enabling the use of the service software when connected to the parallel (LPT) port of the PC. Without the dongle present it is not possible to use the service software. Printer or any such device can be connected to the PC through the dongle if needed.

Caution:	Make sure the you have switched off the PC and the printer before making connections!
Caution:	Do not connected the PKD-1 to the serial port. You may damage your PKD-1!

Product Code

SW Security Device PKD-1:

0750018

Figure 27: View of SW Security Device PKD-1

Dongle/Flash Device FLS-2D (Sales Pack)

FLS–2D is a dongle and flash device incorporated into one package, developed specifically for POS use.

Product Code

Sales Pack – Europe/Africa	0081311
Sales Pack – APAC	0081310
Sales Pack –US	0081309

Figure 28: View of Dongle/Flash Device FLS-2D

Part No.	Description
0750142	FLS-2D Flash Device.
0730163	AXS-4U Cable.
0770177	Disk- Installation package,16bit Dongle Drivers.
0770176	Disk – Installation package, 32bit Dongle Drivers.
0774120	Disk – Installation package for the FLE–5 Drivers.
0774123	Disk – Remote Update Application Installation Package.
0275405	Installation and User Guide
0275404	Registration Request Form

Note: *in addition to this Sales Pack, a Service Cable will be required to connect the FLS–2D to the Product/Phone to be flashed, e.g. XMS–3, and a software package to run the flash-ing process.*

Programmes After Market Services NSB-7 Series Transceivers

Disassembly & Troubleshooting

Table of Contents

assembly & Troubleshooting	Page
assembly of NSR-7	I Л
Transceiver Troubleshooting	
Baseband Troubleshooting	
PCB Test Points	
Testing	
Troubleshooting	
System Clock	20
Sleen Clock	25
Power Supplies	26
Phone is totally dead	28
Flash programming fails	28
Power doesn't stay on or phone is jammed	
Contact service on the phone display	
SIM related faults	30
Audio faults	
Charging fault	
RF testpoints	
RX	
ΤΧ	
VC0	
VCTCX0	
PICTURES FROM MEASUREMENT POINTS	
Receiver Fault Finding	41
General	41
Hagar	
AGC-block	41
Controlling AGC with WinTesla	41
LNA	
RX-filters	
Antenna Switch	
Transmitter fault finding	
General	
Antenna Switch	
PA-Module, Directional Coupler and Power Detector	
HAGAR	
RF path	
Power control	
Synthesizer fault finding	
General	
VCTCX0	
VC0	

List of Figures

	-	Page No
Fig 1	C213, RFC in normal operation	
Fig 2	J227, PURX (levels)	11
Fig 3	J228, SLEEPCLK	12
Fig 4	J236, RAMSELX	12
Fig 5	J237, SYNTHDATA	13
Fig 6	J241, MCUWRX	13
Fig 7	J242, MCUAD1	14
Fig 8	J245, SCLK	14
Fig 9	J245, SCLK (DIFFERENT TIME SCALE IN OSCILLOSCOPE)	15
Fig 10	J250, COBBA (CSX)	15
Fig 11	J251, COBBA (SDA)	16
Fig 12	J252, COBBA (CLK)	16
Fig 13	J253, PCMRXDATA, WinTesla AUdiotest, Loop ON, Input & Output Internal	17
Fig 14	J254, PCMDCLK	17
Fig 15	J255, PCMSCLK	18
Fig 16	J256, PCMTXDATA, WinTesla Audiotest, Loop ON, Input & Output Internal	18
Fig 17	J260, EXTMCUDA0	19
Fig 18	J299, TXP, WinTesla RF Control, TX, Burst, TX level 14, Data Type Cont	19
Fig 19	L200, MIC, no mic connected	20
Fig 20	N310 PIN 19, VIBRA, ACTIVATED FROM KEYPAD	20
Fig 21	N310 PIN 6, BUZZER_CTRL	21
Fig 22	R206, SENA	21
Fig 23	R211, VPP, WinTesla Self Test, MCU Eeprom interface	22
Fig 24	System clock picture	24
Fig 25	Sleep clock picture	25
Fig 26	Layout shown here is NSM-2	
Fig 27	Picture 1. RX I/Q from Hagar to baseband	
Fig 28	Picture 2. RX I/Q before AGC	
Fig 29	Picture 3. LNA control	
Fig 30	Picture 4. PA selection and control	
Fig 31	Picture 5. VBATT during TX burst	
Fig 32	Picture 6. Switch Control	38
Fig 33	Picture 7. Power detector control	39
Fig 34	Picture 8. TX IQ Signals	39
Fig 35	Picture 9. VCO, Operating Voltages	40
Fig 36	Picture 10. Clock Signals, VCTCXO, RFC	40

Disassembly of NSB-7

Step 3. lift the battery first from the bottom end.

Step 4. Remove the battery.

Remove the SIM card from its location.

Remove A-cover.

Step 1. Press the button on the top of the phone.

Step 2. Pull A-cover apart.

Remove the SIM spring by releasing fixings at both ends of the spring.

Main part of the phone disassembled.

Transceiver Troubleshooting

Baseband Troubleshooting

PCB Test Points

Reference	Signal	Note
C213	RFC	MAIN CLOCK (13MHz) HAGAR (N505) -> MAD (D200)
J100*	PWM	CHARGE CURRENT CONTROL CCONT (N100) -> CHAPS (N101)
J101	FBUSTX	FBUS TRANSMITTED DATA MAD (D200) -> SERVICE INTERFACE
J102	FBUSRX	FBUS RECEIVED DATA SERVICE INTERFACE -> MAD (D200)
J103	MBUS	ONE WIRE TWO DIRECTION SERIAL BUS (9600 BIT/S) MAD (D200) -> CCONT (N100)
J104	CCONT (N100)CSX	CCONT (N100) CHIP SELECT MAD (D200) -> CCONT (N100)
J121#	DATA_A	SIM DATA CCONT (N100) <-> SIM CARD READER (X302)
J122#	SIMIO/O_C	SIM IO CONTROL CCONT (N100) <-> SIM CARD READER (X302)
J223	CCONT (N100)INT	CCONT (N100) INTERUPT MAD (D200) -> CCONT (N100)
J226	VCXOPWR	26MHz SYSTEM CLOCK CONTROL MAD (D200) -> VCXO (G830)
J227	PURX	POWER UP RESET CCONT (N100) -> MAD (D200)
J228	SLEEPCLK	SLEEP CLOCK (32kHz) CCONT (N100) -> MAD (D200)
J230	GND	GROUND
J234*	HAGAR (N505)_RESET_X	HAGAR (N505) RESET MAD (D200) -> HAGAR (N505)
J235	ROM1SELX	FLASH CHIP SELECT MAD (D200) -> COMPOMEMORY (D210)
J236	RAMSELX	RAM CHIP SELECT MAD (D200) -> COMPOMEMORY (D210)
J237	SYNTHDATA (SDATA)	HAGAR (N505) SERIAL DATA MAD (D200) -> HAGAR (N505)
J239	DSPXF	NOT CONNECTED

PAMS Technical Documentation

Reference	Signal	Note
U54	MCURDX	MCU READ MAD (D200) -> COMPOMEMORY (D210)
J241	MCUWRX	MCU WRITE MAD (D200) -> COMPOMEMORY (D210)
J242	MCUAD1	MCU ADDRESS LINE 1 MAD (D200) -> COMPOMEMORY (D210)
J245* R205#	SCLK	HAGAR (N505) SERIAL CLOCK MAD (D200) -> HAGAR (N505)
J250	COBBA (N250)CSX	COBBA (N250) CHIP SELECT MAD (D200) -> COBBA (N250)
J251	COBBA (N250)SDA	COBBA (N250) SERIAL BUS DATA MAD (D200) <-> COBBA (N250)
J252	COBBA (N250)CLK	COBBA (N250) SERIAL BUS CLOCK MAD (D200) -> COBBA (N250)
J253	PCMRXDATA	AUDIO RECEIVED DATA COBBA (N250) -> MAD (D200)
J254	PCMDCLK	AUDIO DATA CLOCK (512kHz) MAD (D200) -> COBBA (N250)
J255	PCMSCLK	AUDIO SYNC CLOCK (8kHz) MAD (D200) -> COBBA (N250)
J225	ESYSRESETX	COMPOMEMORY (D210) ENABLE MAD (D200) -> COMPOMEMORY (D210)
J256	PCMTXDATA	AUDIO TRANSMITTED DATA MAD (D200) -> COBBA (N250)
J257	CCUT (MCUGENIOO)	CHARGE CUT MAD (D200) -> CHAPS (N101)
J259*	BUTTON_CTRL_2 (MCUGENIO2)	HEADSET BUTTON DETECTION CONTROL MAD (D200) -> XMICP
J260	EXTMCUDA0	MCU DATA LINE 0 MAD (D200) <-> COMPOMEMORY (D210)
J299* R745#	ТХР	TRANSMITTER POWER CONTROL MAD (D200) -> RF
L200	MIC	MIC BIAS VOLTAGE, 2.1v IF NO MIC V250 -> MIC
N310 PIN 13	KBD LIGHT	KEYPAD LED LIGHT CURRENT UI-SWITCH (N310) -> KEYPAD BACKLIGHT LEDS
N310 PIN 14	KBDLED_ADJ	KEYPAD BACKLIGHT BRIGHTNESS ADJUSTMENT R311 -> UI-SWITCH (N310)
N310 PIN 16	VIBRA_CTRL	VIBRA DRIVE UI-SWITCH (N310) -> VIBRA (M300)

PAMS Technical Documentation

Reference	Signal	Note
N310 PIN 19	VIBRA	VIBRA CONTROL PWM MAD (D200) -> UI-SWITCH (N310)
N310 PIN 3	BUZZER	BUZZER CONTROL PWM MAD (D200) -> UI-SWITCH (N310)
N310 PIN 6	BUZZER_CTRL	BUZZER DRIVE UI-SWITCH (N310) -> BUZZER (B301)
N310 PIN 7	KBLIGHTS	KEYPAD AND DISPLAY BACKLIGHT CONTROL MAD (D200) -> UI-SWITCH (N310)
N310 PIN 8	LCDLED_ADJ	LCD BACKLIGHT BRIGHTNESS ADJUSTMENT R310 -> UI-SWITCH (N310)
N310 PIN 9	LCD LIGHT	LCD LED LIGHT CURRENT UI-SWITCH (N310) -> DISPLAY BACKLIGHT LEDS
N400 PIN 4	IRONX	IRDA (N400) SHUTDOWN MAD (D200) -> IRDA (N400)
N401 PIN 4	IRDA (N400) POWER	2.8V N401 -> IRDA (N400)
R118	PWRONX	POWER ON BUTTON POWER BUTTON (S330) -> CCONT (N100)
R206	SENA	HAGAR (N505) CHIP SELECT MAD (D200) -> HAGAR (N505)
R211	VPP	FLASH PROGRAMMING VOLTAGE N220 -> COMPOMEMORY (D210)
R277	EAD	ACCESSORY DETECTION XMICP -> CCONT (N100)

#ONLY IN NSM-2 *ONLY IN NSB-6 and NSB-7

Figure 1: C213, RFC in normal operation

Figure 2: J227, PURX (levels)

Figure 3: J228, SLEEPCLK

Figure 9: J245, SCLK (DIFFERENT TIME SCALE IN OSCILLOSCOPE)

Figure 10: J250, COBBA (CSX)

Figure 23: R211, VPP, WinTesla Self Test, MCU Eeprom interface

Testing

The MCU software enters a local mode at start-up if suitable resistors are connected to the BTEMP and BSI lines.

NOTE! Baseband doesn't wake up automatically when the battery voltage is connected. Power must be switched on by

pressing the Power key or

inserting a waking pulse BTEMP line or

connecting a charger

In the local mode the baseband can be controlled through MBUS or FBUS connections by a PC-locals software. Baseband internal connections are tested with self tests if possible.

Parameters cannot be set accurate enough by design because of component tolerances. Due to use of 5% resistor values, the channels of the CCONT A/D converters need to be aligned in the production phase. With in battery voltage tuning the MCU software reads the A/D reading from CCONT at 4.1V and stores this reading to emulated EEPROM memory as a reference point. Another reference point is created by assuming that while the input voltage is zero, A/D reading is also zero. Now the slope is known and A/D readings

can be calibrated. Calibration is included in VBATT A/D reading task.

Troubleshooting

Troubleshooting instructions are divided into following sections:

How to check/fix the system/sleep clock.

How to check/fix the power supplies.

Contact service case.

How to check/fix the SIM faults.

How to check/fix the Audio faults.

How to check/fix the charger faults.

The first thing to do is to carry out a thorough visual check of the module. Make sure that:

- there are no mechanical damages

- solder joints are OK

Before changing anything ALL SUPPLY VOLTAGES AND SYSTEM CLOCK / SLEEP CLOCK should be checked.

System Clock

Figure 24: System clock picture.

NOKIA

PAMS Technical Documentation

Sleep Clock

Power Supplies

Figure 26: Layout shown here is NSM-2.

Vbb	= 2.7V - 2.87V
Vcore	= 1.3V - 2.65V
Vcobba	= 2,67V - 2.85V
Vref	= 1.48V - 1.523V
Vbat	= 3.11V - 4.2V
VX0	= 2,67V - 2.85V
VRX	= 2,67V - 2.85V
VTX	= 2,67V - 2.85V
Vsyn1	= 2,67V - 2.85V
Vsyn2	= 2,67V - 2.85V

Power up sequence test:

Cconts digital parts keep MAD in reset by keeping PURX down for a delay of 62ms.

Here is shown the start up sequence picture.

Ch1 = Vbb Ch2 = VXO Ch3 = SleepClk Ch4 = PURX (see picture B)

Phone is totally dead

The phone doesn't take current at all when the power switch is pressed or when the watchdog disable pin (X001 pin 11) is grounded. Make sure that the battery voltage you use is within the specification, i.e. 3.11.. 4.2 V. If the voltage is lower, hardware of CCONT (N100) prevents power on.

IF battery voltage is inside the specification Change the CCONT.

Flash programming fails

The flash programming can be done via panel connector X001 or via dedicated PCB pads. In production, the first programming is done via panel connector. After this, the panel connector is cut away, thus the programming must be done via PCB pads visible through the shield under the battery. The main difference between these is that FLASH-programming voltage is produced differently. The fault finding diagrams for flash programming is shown in the start up sequence picture. In flash programming error cases the flash prommer can give some information about a fault. The fault information messages could be:

- MCU doesn't boot
- Serial clock line failure
- Serial data line failure
- External RAM fault
- Algorithm file or alias ID not found
- MCU flash Vpp error

Power doesn't stay on or phone is jammed

If this kind of fault has come after flash programming, there are most probably open joints in ICs. Solder the joints of ICs. Normally the power will be switched off by CCONT (N100) after 30 seconds if the watchdog of the CCONT can not be served by software. This updating can be seen with an oscilloscope at CCONTCSX (J104). In normal case there is a short pulse from "1" to "0" every 8 seconds. The power off function can be prevented by connecting WDDIS (R118 edge side head) to ground.

Because of the under fill, check the supply voltages, clock signals and power up sequence. If power on sequence fails, there are some open connections under MAD or combomemory. If all seems to be correct, it is best way to erase the flash memory and try to put new software to phone.

Contact service on the phone display

This fault means that software is able to run and thus the watchdog of CCONT (N100) can be served. Self test functions are run when power is switched on and software is executed from flash. If any of the self tests fails, a "contact service" text is shown on display.

MCU self tests are divided to those executed while power up (start up tests) and ones that can be executed with connected PC. The tests and included items are as follows:

1. MCU ROM checksum

Calculates 16 bit checksum out of Flash code and compares it to one found in Flash. Items being checked are:

MAD2 <--> Flash data and address lines, CE0,CE1, WE, BYTE, Vcc, GND, Flash internal functionality

- 2. MCU RAM interface
- 3. MCU RAM component
- 4. MCU EEPROM interface
- 5. MCU EEPROM component
- 6. RTC battery
- 7. CCONT interface
- 8. A/D converter
- 9. SW reset
- A. Power off
- B. Security data
- C. EEPROM tune checksum

D. PPM checksum E MCU download DSP F. DSP alive G. COBBA serial H COBBA parallel I. EEPROM checksum K. PPM validity

SIM related faults

The hardware of the SIM interface from MAD2 (D200) to the SIM connector (X302) can be tested without a SIM card. When the power is switched on and the BSI line is grounded by a resistor, all the used lines (VSIM, RST, CLK, DATA) rise up to 5 V. Thus "Insert SIM card" faults can be found without SIM card.

The fault information "Card rejected" indicates that ATR message (the first message is always sent from card to the phone) is sent from card but the message is somehow corrupted, data signal levels are wrong etc. or factory set values (stored to the emulated EEPROM) are not correct.

Audio faults

Charging fault

RF testpoints

RX

DC levels (oscilloscope)

Point:	Signal:	Component:	Comment:	Picture:
RX1	RXIP and RXQP	R530	I/Q signals (67 kHz) from Hagar to COBBA.	1
RX2	RXIP and RXQP	C520 and C521	Same as RX1 but before AGC state.	2
RX4	DCS LNA ctrl	C642 / V905	~2.8 V burst controls LNA ON/OFF	3
RX5	Rxref	C534 / R533	DC 1.2 V from COBBA to Hagar	na
RX6	VREF_2	C564 / R563	DC 1.5 V from COBBA to Hagar	na
RX7	VIna	C562	DC 2.8 V from COBBA to Hagar	3
RX8	Vrxrf	C553 / C557	DC 2.8 V from COBBA to Hagar	na
RX9	Vsynte	C 561	DC 2.8 V from COBBA to Hagar	na

RF levels (spectrum analyzer)

Point:	Signal:	Component:	Comment
RX11	19301990 MHz	Z600	Second saw-filter DCS output to baluuns, (-41 dBm) (check level from reference engine)
RX13	19301990 MHz	Z620	First saw-filter DCS output to LNA, (-58 dBm) (check level from reference engine)

ТΧ

DC levels

Point:	Signal:	Component:	Comment:	Picture:
TX1	TX power level	C714 / R744	PA selection and control	4
TX2	Vdd1	C772 / L752	Battery voltage to PA Vbatt 3.34.8 V	5
TX3	ТХР	J519	TX control signal (antenna switch, differential amplifier	
TX16	TXVDCS	C747	~2.5 V burst controls antenna switch	6
TX6 TX7	TXVdet DETO	C731 / R732 R764 / R763	Operating voltage to TX detector 2.8 V burst and detected TX level to HAGAR	7
TX8	ΤΧΟ	R546	TX Q signals from baseband to Hagar (+- 67 kHz, DC level 1.2 V, swing level 1.32 V)	8
TX9	TXI	R541	TX I signals from baseband to Hagar (+- 67 kHz, DC level 1.2 V, swing level 1.32 V)	8

PAMS Technical Documentation

Point:	Signal:	Component:	Comment:	Picture:
TX10	ТХС	R792 / C792	TX power control voltage from baseband to Hagar 02.2 V burst	4

RF levels

Point:	Signal:	Component:	Comment:
TX11	DETO	C790 / C794	Detected TX level to HAGAR
TX12	RX and TX	Z670 / ant.	Final TX frequency and level, (28 dBm, GSM1900 / lev 0) (check level from reference engine)
TX20	PA output DCS	C743	PA output signal (check level from reference engine)
TX21	Antsw input DCS	Z670 / C721	Antsw input signal (check level from reference engine)
TX15	PA input DCS	C734	PA input signal
TX22	PWR detector input	V760 input / C733	14 dB below TX output (check level from reference engine)

VCO

DC levels

Point:	Signal:	Component:	Comment:	Picture:
VC01	VCC	R807 / C804	2.64 V DC VCO operating voltage	9
VCO2	Vchp	R807 or C783 or C560	4.7 V DC from reg. N600 to VCO	9
VC03	VCP	N600	5.0 V DC from CCONT to reg. N600	9
VC04	VC	R802 / G800	0.5 V4.2 V burst DC from Hagar to VCO	9

RF levels

Point:	Signal:	Component:	Comment:
VC05	37003980 MHz	G800 / R805	VCO signal needs 4 GHz spectrum analyser.*) level ~ OdBm (check level from reference engine)

*) RF input signal of PA and VCO operating voltages can be used to check VCO condition if only 3 GHz spectrum analyzer is available.

VCTCXO

DC levels

Point :	Signal:	Component:	Comment:
VX01	Vtcxo	G830	VCTCXO operating voltage from CCONT DC 2.8 V
VX02	AFC	R832 / G830	AFC from COBBA to VCTCX0 DC 0.0462.254 V

RF levels

Point:	Signal:	Component:	Comment:	Picture:
VX03	26 MHz	G830 / R833	Clock signal from VCTCXO to Hagar	10
VX04	13 MHz	V800 / R834	RFC from Hagar to MAD	10

Other checking points

SCLK	R205
SENA	R206
SDATA	J237

PICTURES FROM MEASUREMENT POINTS

Figure 27: Picture 1. RX I/Q from Hagar to baseband

Figure 28: Picture 2. RX I/Q before AGC

Figure 29: Picture 3. LNA control

Figure 30: Picture 4. PA selection and control

Figure 31: Picture 5. VBATT during TX burst

Channel 1: TX3: TXP, J519 Channel 2: TX16: C747, TXVDCS

Figure 32: Picture 6. Switch Control

Figure 33: Picture 7. Power detector control

Figure 34: Picture 8. TX IQ Signals

Figure 35: Picture 9. VCO, Operating Voltages

Figure 36: Picture 10. Clock Signals, VCTCXO, RFC
Receiver Fault Finding

General

Middle channel 661 is used as a test channel 1960 MHz and signal level in RF generator is set to -50 dBm. Signal levels and forms are referred in RF measurement points. Signal levels can vary depending the measurement method. So it is recommended to make measurements by your way and make own reference level table. The phone which you are using for this reference table must be undamaged.

Hagar

AGC-block

AGC-block is inside HAGAR. AGC block can be tested measuring the IQ signal with the oscilloscope. IQ signal in RF/BB interface can be measured at points RX1 and RX2.

Point RX1 is after AGC stage and from that point 5 gain steps (3 ... 8) should be found. Basic form of signal can be seen in figure 4 in RF measurement points.

Point RX2 is before AGC stage and only LNA gain step (2... 3) is available in this point. Basic form of the signal is illustrated in RF measurement points.

Controlling AGC with WinTesla

When continuous RX mode is used, AGC gain step can be selected by entering gain step number into the AGC Absolute text box. When burst mode is used in RX AGC is automatically adjusted by the system.

In burst mode signal level in point RX1 should keep its level when RF signal level is adjusted in the limit of AGC dynamic range.

LNA

LNA operation can be checked out by measuring the signal level from points RX 11 using spectrum analyzer. Signal level measured this point can be found in RF Testpoints. LNA gain step can also be tested from point RX2 by oscilloscope.

RX-filters

RX-filters can be checked by measuring the signal level from points RX11 and RX13. Signal levels in these points can be found in RF Testpoints.

Mostly problem with these saw filter is the linearity over the frequency band. If that is the case, the measurement should be carried out also with some edge channels.

Antenna Switch

Antenna switch operation can be tested by measuring the signal level from point RX13 with spectrum analyzer. Signal levels can be verified in RF Testpoints.

Antenna switch RX path is on all the time except during the TX burst.

Transmitter fault finding

General

Middle channel 661 is used as a test channel (1880 MHz). Signal levels and forms are referred to in RF testpoints. Signal levels can vary depending the measurement method. So it is recommended to make measurements by your way and make own reference level table. The phone which you are using for this reference table must be undamaged.

Set the wanted operating channel and power level.

Antenna Switch

When TX mode is in use only burst mode can be used. Antenna switch is controlled with a pulse in control line. This antenna switch control signal can be measured in points TX16. Shape of these control signals can be seen in RF measurement points.

Antenna switch operation can be checked by measuring the signal level from points TX12 and TX21. Specified loss for antenna switch is 1.2 dB but measurement can give some dB more attenuation depending of the method. Check the level from reference engine.

PA-Module, Directional Coupler and Power Detector

At first the input signal level of the PA should be checked. Input signals can be measured from point TX15. Refer the levels to reference engine and RF Testpoints.

Output of the PA can be checked by measuring the DETO signal coming out from detector. Measure DETO from TX11 and refer to the RF measurement points. If this is OK then PA module, Directional coupler and Power Detector are working ok.

If DETO is not ok check the supply of the detector TXVdet TX6 and check also the input of the detector by measuring the point TX22 with spectrum analyzer. Refer the results to RF Testpoints.

If the TX6 is ok but TX22 not then check PA power control line Vpd if Vpd is ok check the components in RF signal path and check the PA supply voltage.

HAGAR

RF path

If RF output from HAGAR seems not be ok then IQ input signals from BB to Hagar should be tested. These signals can be measured from points TX8 and TX9 and signals can be referred to RF Testpoints.

Power control

Check the TXC point TX10 DETO point TX11 and Vpd point TX19 refer the results to RF measurement points. If only Vpd fails then Hagar power control has problems.

Synthesizer fault finding

General

To test VCO frequency properly spectrum analyzer has to be able to measure 4GHz frequencies.

VCTCXO

VCTCXO signal can be measured from point VXO3 and VXO4, VXO4 is 13MHz clock signal for BB parts and VXO3 is 26 MHz signal for Hagar) refer the results to RF measurement points. IF 13 MHz is not present but 26 MHz is Hagar divider has a problem. IF 26 MHz is not present VCTCXO has problem.

VCO

VCO signal can be measured at point VCO5. VCO operation can be checked also with oscilloscope by measuring the control voltage in RX burst mode. Additional settings should be GSM1900 mode, RX burst mode, channel 810 and monitoring channel 512. Refer to RF measurement points.

If VCO is not operating check Vcc (points VCO1, VCO3 and VCO2) Refer to figure 9 in RF measurement points. If supply voltages are ok VCO has problem.

This Page Intentionally Blank

Programmes After Market Services NSB-7 Series Transceivers

Non Serviceable Accessories

Table of Contents

Non Sonvissoble Association	Page No
Non Serviceable Accessories Standard Battery BLB-2	۰۰۰۰۰۰ I ل
Product Code	
AC Travel Charger ACP-7	
Product Codes	
Specification	
Performance Travel Charger ACP-8	6
Product Codes	6
Specification	6
Cigarette Lighter Charger ICH-8	7
Product Code	7
Specification	7
Cigarette Lighter Charger ICH-9	
Product Code	
Specification	
Desktop Stand DCV-1B	
Product Code	9
Specification	9
Headset HDC-5	10
Product Code	10
Plug and Play Hands Free Unit PPH-1	11
Product Code	
Specification	
Handsfree Microphone HFM-8	12
Product Code	12
Loopset LPS-3	13
Product Code	13
Recommended Batteries	13
Pocket Clip SKB-2	
Product Code	14
Swivel Mount HHS-12	15
Product Code	15

PAMS Technical Documentation

List of Figures

		Page No
Fig 1	View of Standard Battery BLB-2	4
Fig 2	View of AC Travel Chargers ACP-7	5
Fig 3	View of Performance Travel Charger ACP-8	6
Fig 4	View of Cigarette Lighter Charger LCH-8	7
Fig 5	View of Cigarette Lighter Charger LCH-9	8
Fig 6	View of Desktop Stand DCV-1B	9
Fig 7	View of Headset HDC-5	10
Fig 8	View of Hands Free Cigarette Charger PPH-1	11
Fig 9	View of Handsfree Microphone HFM-8	12
Fig 10	View of Loopset LPS-3	13
Fig 11	View of Pocket Clip SKB-2	14
Fig 12	View of Button for SKB-2	14
Fig 13	View of Swivel Mount HHS-12	15

Standard Battery BLB-2

The BLB-2 is a Li-ion battery with 650 mAh capacity in a white plastic package.

Name:	Type Code:	Material Code:
Battery Pack	BLB-2	0670246
Battery Pack for Americas	BLB-2	0670322

AC Travel Charger ACP-7

The standard charger is available for different voltage levels and comes with different wall plugs. The standard charger can also be used as a power supply for the desktop stand.

Figure 2: View of AC Travel Chargers ACP-7

Product Codes

Name:	Type Code:	Material Code:
AC Travel Charger (Euro plug) 207-253 Vac	ACP-7E	0675144
AC Travel Charger (US plug) 108-132 Vac	ACP-7U	0675143
AC Travel Charger (US plug) 198-242 Vac	ACP-7C	0675158
AC Travel Charger (UK plug) 207-253 Vac	ACP-7X	0675145
AC Travel Charger (UK plug) 180-220 Vac	ACP-7H	0675146
AC Travel Charger (Australia plug) 216-264 Vac	ACP-7A	0675148

Specification

Output connectors:	3.5 mm DC plug, 2-pole	
Protection:	PTC protection	
Output Voltage/Current (typ.)	7.6 V / 370 mA	

Performance Travel Charger ACP-8

Operating within the voltage range 90 V...264V AC (50 Hz...60Hz), the Performance Travel Charger is practically current independent in normal office and household use. Like the standard charger, it is compatible with all battery options and is available for different wall sockets.

The Performance Travel Charger can also be used with the desktop stand.

Product Codes

Name:	Type Code:	Material Code:
Performance Travel Charger Euro plug 90-264 Vac	ACP-8E	0675195
Performance Travel Charger Korea plug 90-264 Vac	АСР-8К	0675199
Performance Travel Charger UK plug 90-264 Vac	ACP-8X	0675197
Performance Travel Charger US plug 90-264 Vac	ACP-8U	0675196
Performance Travel Charger China plug 90-264 Vac	ACP-8C	0675211
Performance Travel Charger Australia plug 90-264 Vac	ACP-8A	0675214

Specification

Output connectors:3.5 mm DC plug, 2-pole (+,-,control)Protection:Output fault voltage 16 V max.Output voltage/current (typ):6.0 V (+/-0.3 V)/620 mA

Cigarette Lighter Charger LCH-8

A green light indicates that the cigarette lighter charger is ready for charging. Check the charging status on the phone display. The main use is with 12V vehicle system. It is using 3 wire charging structure (controlled constant voltage). It has internal output current limitation of 650mA.

The car battery connectors must perform reliable electrical connection to the cigarette lighter socket.

Figure 4: View of Cigarette Lighter Charger LCH-8

Product Code

Name:	Type Code:	Material Code:
Cigarette Lighter Charger	LCH-8	0675231

Specification

Output connectors:

3.5 mm DC plug. 3 pin.

Protection:

input fused, output current limit 650 mA

Voltage

- input: 10.8...32 V
- output: The output voltage is controlled by the phone via 3rd wire.

Cigarette Lighter Charger LCH-9

A green light indicates that the cigarette lighter charger is ready for charging. Check the charging status on the phone display. The input voltage can be from 11 or 32 V d.c., negative grounding.

The Universal mobile charger can be used with all car accessories provided for your phone except with MCC-1.

Product Code

Name:	Type Code:	Material Code:
Cigarette lighter charger	LCH-9	0675120

Specification

Connectors

• input:	D21/23 mm
• output:	3.5 mm DC plug
Protection:	input fused, output current limit 850 mA
Voltage	
• input:	1132 V
• output (nominal):	8.4 V
Nominal output current:	800 mA
Nominal output current.	800 IIIA

Desktop Stand DCV-1B

The desktop stand provides a mounting place for charging the battery with the transceiver.

Figure 6: View of Desktop Stand DCV-1B

Product Code

Name:	Type Code:	Material Code:
Desktop Stand	DCV-1B	0675220

Specification

Connections:

3.5 mm DC jack (ACP-7 or ACP-8)

Headset HDC-5

The HDC-5 headset provides a hook switch for the phone/microphone.

Name:	Type Code:	Material Code:
Headset	HDC-5	0694059

Plug and Play Hands Free Unit PPH-1

The PPH-1 provides rapid charging for the phone and the possibility for HF operation. The PPH-1 plug and play hands free unit is connected directly to the cigarette lighter in a car. PPH-1 is connected to the phone by a cable with a combinated connector with charger and headset connectors.

Figure 8: View of Hands Free Cigarette Charger PPH-1

Product Code

Name:	Type Code:	Material Code:
Hands Free Unit	PPH-1	0675182

Specification

Output connectors:	3.5 mm DC plug, 2-pole (+,-,control)
Input voltage:	8-16 VDC
Protection:	Output fault voltage 16 V max.
Output current:	750 mA max.

Handsfree Microphone HFM-8

The HFM-8 microphone can be used together with PPH-1 plug and play handsfree unit.

Figure 9: View of Handsfree Microphone HFM-8

Name:	Type Code:	Material Code:
Handsfree Microphone	HFM-8	0690016

Loopset LPS-3

Loopset LPS-3 has been developed for hearing aid users to allow them to use mobile phones. It is based on induction technology. All hearing aids have support for induction loop, i.e. they have a little telecoil inside. This coil can capture the signal supplied to the loop. Standard hearing aids have two operation modes; M-mode for normal microphone use and T-mode for telecoil use.

Figure 10: View of Loopset LPS-3

Product Code

Name:	Type Code:	Material Code:
Loopset	LPS-3	0630244

Recommended Batteries

Туре:	Size/IEC-type:	Rated capacity:	Talk Time (3mA load)	Stand-by (20uA load)
Zinc Air Hearing Aid Battery	675 / PR44	540 mAh	180 hours	840 hours or 35 days (1)
Silver Oxide Hearing Aid Battery	675 / SR44	150 mAh	50 hours	7500 hours or 310 days.
Alkaline Battery	675 / LR44	110 mAh	36 hours	5500 hours or 230 days.

NOTE: (1): The capacity of the zinc air battery will fall 20% in a month. After the activation the zinc battery begins to self-discharge. The battery will be empty within 5 weeks.

Pocket Clip SKB-2

The Pocket Clip provides an option for carrying the phone. the clip is integrated to a B-cover.

Name:	No: of Pieces	Type Code:	Material Code:
Pocket Clip (Retail Pack) Includes the following:		SKB-2	0720218
Button for SKB-2	3 pcs		
Screw	3 pcs		
Mounting Rubber for SKB-2	3 pcs		
Pocket Clip SKB-2	1 pcs		

Figure 12: View of Button for SKB-2

Swivel Mount HHS-12

The HHS-12 Swivel Mount is a mount that allows the Pocket Clip (SKB-2) to be attached.

Name:	Type Code:	Material Code:
Swivel Mount	HHS-12	0620054

This Page Intentionally Blank